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Abstract In this paper we extend the generalized algebraic fundamental group constructed in Esnault

and Hogadi, (Trans. Amer. Math. Soc. 364(5) (2012), 2429–2442) to general fibered categories using the
language of gerbes. As an application we obtain a Tannakian interpretation for the Nori fundamental

gerbe defined in Borne and Vistoli (J. Algebraic Geom. (2014), S1056–3911, 00638-X) for nonsmooth
non-pseudo-proper algebraic stacks.
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Introduction

Let k be a field and let X be a smooth and connected scheme over k with a rational

point x ∈ X (k). The algebraic fundamental group of (X, x), denoted by πalg(X, x) is the

affine group scheme over k associated with the k-Tannakian category Dmod(X/k) of

OX -coherent DX/k-modules neutralized by the pullback along x : Spec k −→ X . If k is

algebraically closed then the profinite quotient of πalg(X, x) is π ét
1 (X, x), Grothendieck’s

étale fundamental group developed in [9].

On the other hand if X is a connected and reduced scheme over k with a rational

point x ∈ X (k), Nori defined in [10] a profinite fundamental group scheme πN(X, x) over

k which classifies torsors over X by finite group schemes of k with a trivialization over x .

If k is algebraically closed then its pro-étale quotient is again π ét
1 (X, x), so that if X is

smooth we have maps

πalg,∞(X, x) πN(X, x)

πalg(X, x) π ét
1 (X, x)

c

a

bd

where a is the profinite quotient and b is the pro-étale quotient (and thus an isomorphism

if char k = 0). If char k > 0, in [7] Esnault and Hogadi completed this diagram with dashed

arrows from an affine group scheme πalg,∞(X, x) associated with a Tannakian category

denoted by Strat(X,∞), with c a profinite quotient and d a quotient.

This work was supported by the European Research Council (ERC) Advanced Grant 0419744101 and
the Einstein Foundation.
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2 F. Tonini and L. Zhang

In this paper we would like to generalize the above picture to certain fibered categories

over a field k which may not possess a rational point, and this applies in particular

to algebraic stacks which are not necessarily smooth. To achieve this we will use the

language of gerbes instead of that of affine group schemes, just as how Borne and Vistoli

generalized the Nori fundamental group scheme to fibered categories in [4].

For smooth schemes X there are several equivalent descriptions of the category

of OX -coherent DX -modules, for instance the category Crys(X) of crystals on the

infinitesimal site of X , or the category Str(X) of stratified bundles, or, in positive

characteristic, the category Fdiv(X) of F-divided sheaves (see [3, Proposition 2.11, p. 2.13]

and [8, Theorem 1.3, p. 4]).

Let X be a quasi-compact, quasi-separated and connected category fibered in groupoids

over k (see Definition 2.5 and the section Notations and conventions for the meaning

of those adjectives). In order to define an algebraic fundamental gerbe in general,

we are going to define k-linear monoidal categories Crys(X ), Str(X ), and, in positive

characteristic, Fdiv(X ), and discuss when those are Tannakian categories. More precisely

we will define the big infinitesimal site Xinf of X , the big stratified site Xstr of X and the

direct limit X (∞,k) of relative Frobenius of X . These are fibered categories over k equipped

with a morphism from X . The categories Crys(X ), Str(X ) and Fdiv(X ) are then defined

as Vect(Xinf), Vect(Xstr) and Vect(X (∞,k)) (see Definitions 6.7 and 6.20), where Vect(−)
denotes the category of vector bundles (see the section Notations and conventions for its

definition). Since those categories are not equivalent in general when X is not smooth, we

develop an axiomatic language which allow to treat all of them together. The advantage of

this language is that all functors involved will be expressed as pullback of vector bundles

along certain maps, making proof easier and more conceptual.

Let X −→ XT be a morphism of fibered categories over k, and let T (X ) = Vect(XT ).
We will list four axioms A, B, C and D on the given morphism X −→ XT or, to simplify

the exposition, on T (X ) (see Axioms 5.2) which imply nice ‘Tannakian’ properties of

T (X ). Denote by L0 the endomorphisms of the unit object of T (X ), that is L0 = H0(OXT )

and, if C is a k-Tannakian category, denote by 5C the associated affine gerbe over k. For

instance A and B imply that L0 is a field, that T (X ) is an L0-Tannakian category

and, moreover, that 5T (X ) has the following universal property: there is an L0-map

XT −→ 5T (X ) which is universal among L0-morphisms from XT to an affine gerbe over

L0 (see Theorem 5.8).

The first main application of our axiomatic language is the following:

Theorem I (Lemma 2.7, Theorems 6.8 and 6.23). Assume that X is geometrically

connected over k and either H0(OX ) = k or there exists a field extension L/k separably

generated up to a finite extension (see Defnition 6.1) such that X (L) 6= ∅.

(1) If X admits an fpqc covering U → X from a Noetherian scheme U defined over the

perfection kperf of k then Str(X ) satisfies axioms A, B and C and it is a k-Tannakian

category.

(2) If X is an algebraic stack locally of finite type over k, then Crys(X ) satisfies axioms

A, B and C and it is a k-Tannakian category.
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Algebraic and Nori fundamental gerbes 3

(3) (char k > 0) If X admits an fpqc covering U → X from a Noetherian scheme U
whose residue fields are separable up to a finite extension over k (see Defnition 6.1)

then Fdiv(X ) satisfies axioms A, B, C and D and it is a pro-smooth banded (see

Defnition B.11) k-Tannakian category.

In any of the above situations, taking the gerbe associated with the corresponding

Tannakian category, one has a notion of algebraic fundamental gerbe for X /k. Notice

moreover that all conditions are satisfied in Theorem I if X is a geometrically

connected algebraic stack of finite type over k. In this last situation, in an unpublished

result B. Bhatt proved that the three categories Crys(X ), Str(X ) and, in positive

characteristic, Fdiv(X ) are all equivalent. This means that the three candidates for

algebraic fundamental gerbe coincide for algebraic stacks of finite type over k.

The fact that Fdiv(X ) is pro-smooth banded has already been observed by dos Santos

in [12, Theorem 11], under the assumption that k is algebraically closed and X is a

connected, locally Noetherian and regular scheme (see Remark 6.28).

Once we have a notion of an algebraic fundamental gerbe we must compare it with

the relative analogous of the Grothendieck’s étale fundamental group, namely the Nori

étale fundamental gerbe 5N,ét
X /k of X /k (see Definition 4.1) which exists if and only if X

is geometrically connected over k (see Proposition 4.3). If T (X ) satisfies axioms A, B

and C then X is geometrically connected over L0 and 5N,ét
X /L0

is the pro-étale quotient of

5T (X ). If moreover T (X ) satisfies axiom D, one can use the profinite quotient instead

(see Theorem 5.8). In the hypothesis of Theorem I we have that 5N,ét
X /k is the pro-étale

quotient of 5Str(X ) and 5Crys(X ) in situations (1) and (2) respectively, it is the profinite

quotient of 5Fdiv(X ) in situation (3).
The fibered category X admits a Nori fundamental gerbe 5N

X /k over k if and only if

it is inflexible over k (see [4, Definition 5.3 and Theorem 5.7]) and in this case 5N,ét
X /k is

the pro-étale quotient of 5N
X /k . We give a new concrete geometric interpretation of the

notion of inflexibility: If X is reduced (see Definition 2.5) then X is inflexible if and only

if k is integrally closed in H0(OX ) (see Theorem 4.4).

Assume X reduced from now on. In characteristic 0 Nori fundamental gerbe and Nori

étale fundamental gerbe coincide, so let us assume char k = p > 0. The same procedure

used by Esnault and Hogadi in [7] allows us to construct a category T∞(X ) starting from

the functor T (X ) −→ Vect(X ) and the pullback of Frobenius on those categories (see

Definition 5.11). In particular are defined categories Crys∞(X ), Str∞(X ) and Fdiv∞(X ).
If T (X ) satisfies axioms A and B then T∞(X ) is an L∞-Tannakian category, where L∞ is

the purely inseparable closure of L0 inside H0(OX ) and thus, X is also a category fibered

over L∞. If T (X ) also satisfies axiom C, then X is inflexible over L∞ and we have a

diagram

5T∞(X ) 5N
X /L∞

5T (X ) 5
N,ét
X /L0

c

a

bd
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4 F. Tonini and L. Zhang

where c is a profinite quotient of L∞-gerbes (see Theorem 5.14). In particular

Rep(5N
X /L∞

) ' EFin(T∞(X )), where EFin(−) denote the full subcategory of essentially

finite objects (see [4, Definition 7.7]). Via Theorem I we obtain the following Tannakian

interpretation of the Nori fundamental gerbe, which extends the Tannakian interpretation

in [4, Theorem 7.9] to non-pseudo-proper fibered categories.

Theorem II. In the hypothesis of Theorem I assume moreover X reduced and inflexible.

In situation (1) (respectively (2), (3)) of Theorem I we have a canonical equivalence of

k-Tannakian categories:

Repk(5
N
X /k) ' EFin(Str∞(X )) (respectively EFin(Crys∞(X )), EFin(Fdiv∞(X ))).

If X is inflexible over k and we apply the axiomatic theory to X −→ XT = 5
N,ét
X /k

we obtain Rep5N
X /k ' T∞(X ). In particular Rep(5N

X /k) can be reconstructed from

the map Rep(5N,ét
X /k ) −→ Vect(X ) and the Frobenius pullback of those categories (see

Theorem 5.16).

Finally we study the infinitesimal part of 5N
X /k , that is its pro-local quotient 5N,L

X /k
(see Definition B.11), and give a concrete description of its representations in terms

of vector bundles on X : applying the axiomatic theory to X −→ XT = Spec k we have

Rep5N,L
X /k ' T∞(X ) (see Theorem 7.1).

One of the main ingredient in the proofs of our results regarding the Nori gerbes is

the use of a generalized version of Tannaka’s duality that can be applied, not only to

gerbes, but also to finite stacks. This version of Tannakian duality is discussed § 1 in a

great generality.

In [14], which is based on the results of this paper, we gave an alternative and more

geometric description of essentially finite F-divided sheaves.

We outline the content of this paper. In the first section we describe a generalization of

classical Tannaka’s duality, while in the second and third section we collect some useful

results that will be used through all the paper. In section four we introduce different

notions of Nori fundamental gerbes and discuss their existence. Section five contains the

formalism and general results of the paper, while in section six we determine appropriate

conditions under which Str(X ), Crys(X ) and Fdiv(X ) satisfy the axiom of section five. In

the last section we study the pro-local Nori fundamental gerbe. In the two appendices

we study limit of categories and general results about affine gerbes respectively.

Notations and conventions

Given a ring R we denote by Aff/R the category of affine R-schemes or, equivalently, the

opposite of the category of R-algebras.

If Z and Y are categories over a given category C, by a map Z −→ Y we always mean

a base preserving functor. Similarly given maps F,G : Z −→ Y a natural transformation

γ : F −→ G will always be a base preserving natural transformation, that is for all

z ∈ Z over an object c ∈ C, the map γz : F(z) −→ G(z) lies over idc. If Y is a fibered

category we will denote by Homc
C(Z,Y) the category of base preserving functors Z −→ Y

which send all arrows to Cartesian arrows and the maps are the base preserving natural
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Algebraic and Nori fundamental gerbes 5

transformations. If Y is a category fibered in groupoids then Homc
C(Z,Y) is the category

of all base preserving functors and we will simply denote it by HomC(Z,Y). If C = Aff/R,

where R is a base ring, we will simply write Homc
R or Homc if the base ring is clear from

the context. If Z is a category over Aff/R the categories

Vect(Z) ⊆ QCohfp(Z) ⊆ QCoh(Z)

are defined as Homc
R(Z,Vect) ⊆ Homc

R(Z,QCohfp) ⊆ Homc
R(Z,QCoh), where Vect ⊆

QCohfp ⊆ QCoh are the fiber categories (not in groupoids) over Aff/R of locally free

sheaves of finite rank, quasi-coherent sheaves of finite presentation and quasi-coherent

sheaves respectively. The categories Vect(Z), QCohfp(Z) and QCoh(Z) are R-linear and

monoidal categories. We say that a sequence of maps F −→ F −→ F ′′ in QCoh(Z) is

pointwise exact if for all ξ ∈ Z over Spec A the sequence of A-modules F ′(ξ) −→ F(ξ) −→
F ′′(ξ) is exact. Notice that in QCohfp(Z) and QCoh(Z) all maps have a cokernel (defined

pointwise). If Z = Spec B is affine we will simply write Vect(B), QCohfp(B) and QCoh(B).
The writing ξ ∈ Z(A) means that ξ is an object of Z over Spec A, and if F ∈ QCoh(Z),
we will denote by Fξ ∈ QCoh(A) the evaluation of F in ξ .

If f : Y −→ Z is a base preserving map of categories over Aff/R then we have functors

f ∗ : Vect(Z) −→ Vect(Y), f ∗ : QCohfp(Z) −→ QCohfp(Y),
f ∗ : QCoh(Z) −→ QCoh(Y)

obtained simply by composing with f and they are R-linear and monoidal.

An fpqc covering X −→ Y between categories fibered in groupoids is a functor

representable by fpqc covering of algebraic spaces. A fibered category is called

quasi-compact if it is fibered in groupoids and it admits an fpqc covering from an

affine scheme. Let X and Y be categories fibered in groupoids. A map f : X −→ Y is

quasi-compact if X ×Y A is quasi-compact for all maps Spec A −→ Y, it is quasi-separated

if its diagonal is quasi-compact. The category X is called quasi-separated is X −→ SpecZ
is quasi-separated, which implies that all maps X −→ Y are quasi-separated if Y has

affine diagonal. If f : X −→ Y is quasi-compact and quasi-separated and X and Y admit

an fpqc covering from a scheme (respectively affine map between categories fibered

in groupoids) then f ∗ : QCoh(Y) −→ QCoh(X ) has a right adjoint f∗ : QCoh(Y) −→
QCoh(X ) which is compatible with flat base changes of Y (respectively any base change

of Y) (see [13, Propositions 1.5 and 1.7]).

Given a category fibered in groupoids X over Aff/Fp we define the absolute Frobenius

FX of X as

FX : X −→ X , X (A) 3 ξ 7−→ F∗Aξ ∈ X (A)

where FA : Spec A −→ Spec A is the absolute Frobenius of A. The Frobenius is Fp-linear,

natural in X and coincides with the usual Frobenius when X is a scheme. If X is defined

over a field k of characteristic p we define X (i,k)
= X ×k k, where k −→ k is the ith power

of the absolute Frobenius of k, and we regard it as category over k using the second

projection. For simplicity when k is clear from the context we will use just −(i) dropping

the k. Notice that (X (i))( j) is canonically equivalent to X (i+ j). The ith relative Frobenius

of X is the k-linear map X −→ X (i) that, composed with the projection X (i)
−→ X , is
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6 F. Tonini and L. Zhang

the Frobenius F i
X . Notice that applying −( j) to the ith Frobenius of X one obtains the

ith Frobenius of X ( j) and the composition of 1th Frobenius

X −→ X (1)
−→ · · · −→ X (i)

is the ith Frobenius of X . When X = Spec A we will also set A(i) = A⊗k k, where k −→ k
is the ith power of the absolute Frobenius of k, so that X (i) = Spec A(i).

All monoidal categories and functors considered will be symmetric unless specified

otherwise.

1. Tannaka’s reconstruction and recognition

Definition 1.1. A pseudo-abelian category is an additive category C endowed with a

collection JC of sequences of the form c′ −→ c −→ c′′, where all objects and maps are

in C. A linear functor 8 : C −→ D of pseudo-abelian categories is called exact if it maps

a sequence of JC to a sequence isomorphic to one of JD.

Let R be a ring. If X is a category over Aff/R then Vect(X ) will be considered as

pseudo-abelian with the collection of maps F ′ −→ F −→ F ′′ such that

0 −→ F ′ −→ F −→ F ′′ −→ 0

is pointwise exact. If C is abelian it is also pseudo-abelian if endowed with its short exact

sequences. If C and D are R-linear, monoidal and pseudo-abelian categories we denote

by Hom⊗,R(C,D) the category whose objects are R-linear, exact and monoidal functors

and whose arrows are natural monoidal isomorphisms. Notice that if f : Y −→ Z is any

base preserving map of categories over Aff/R then f ∗ ∈ Hom⊗,R(Vect(Z),Vect(Y)).
Let C be a pseudo-abelian monoidal R-linear category. The expression

5C(A/R) = Hom⊗,R(C,Vect(A))

defines a stack in groupoids for the fpqc topology over R. There is a functor

C −→ Vect(5C), c 7−→ (5C(A) 3 ξ 7−→ ξ(c) ∈ Vect(A))

which is R-linear, monoidal and exact. This induces a natural functor

HomR(Z,5C) −→ Hom⊗,R(C,Vect(Z))

for all categories Z over Aff/R, which is easily seen to be an equivalence.

We say that C satisfies Tannakian recognition if the functor 8 : C −→ Vect(5C) is an

equivalence and for all sequences χ : c′ −→ c −→ c′′ we have 8(χ) is exact if and only if

χ ∈ JC (equivalently 8 has an R-linear, monoidal and exact quasi-inverse).

If Y is a category over Aff/R there is a base preserving functor Y −→ 5Vect(Y), namely

η ∈ Y(A) 7−→ (Vect(Y) 3 8 7−→ 8(η) ∈ Vect(A)).

We say that a category fibered in groupoids Y satisfies Tannakian reconstruction if the

functor Y −→ 5Vect(Y) is an equivalence, or, equivalently, the pullback

Homc
R(Z,Y) −→ Hom⊗,R(Vect(Y),Vect(Z)), f 7−→ f ∗

is an equivalence for all categories Z over Aff/R (just apply Homc
R(Z,−) to the map

Y −→ 5Vect(Y)).
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Algebraic and Nori fundamental gerbes 7

Remark 1.2. If C satisfies Tannakian recognition then 5C satisfies Tannakian

reconstruction and if Y satisfies Tannakian reconstruction then Vect(Y) satisfies

Tannakian recognition. Notice also that those conditions do not depend on the base ring

R. Indeed Vect(−) is insensible to the base ring and if C is a pseudo-abelian monoidal

R-linear category then

5C −→ Aff/R −→ Aff/Z
coincides with 5C where C is thought as a Z-linear category.

Definition 1.3. Let Z be a category fibered in groupoids and D ⊆ QCoh(Z) be a full

subcategory. We say that D generates QCoh(Z) if any object of QCoh(Z) is a quotient

of an arbitrary direct sum of objects of D. We say that Z has the resolution property if

Vect(Z) generates QCoh(Z).

Theorem 1.4 [13, Corollary 5.4]. If Z is a quasi-compact stack for the fpqc topology over

a ring R with quasi-affine diagonal and the resolution property then it satisfies Tannakian

reconstruction.

Example 1.5. Let k be a field. Classical Tannaka’s duality implies that: if C is a

k-Tannakian category then it satisfies Tannakian recognition and 5C is an affine gerbe

(gerbes with affine diagonal) over k. Conversely if 5 is an affine gerbe over k then it

satisfies Tannakian reconstruction and Vect(5) is a k-Tannakian category. More precisely

5 has the resolution property (see [6, Corollary 3.9, p. 132]).

Lemma 1.6. Let f : X −→ Y be a map of categories fibered in groupoids over R. If

D ⊆ QCoh(X ) generates QCoh(X ) and f is finite, faithfully flat and finitely presented

then f∗D = { f∗E | E ∈ D} generates QCoh(Y). If D ⊆ QCoh(Y) generates QCoh(Y) and

f is affine then f ∗D = { f ∗H | H ∈ D} generates QCoh(X ).
Proof. In the second case, if F ∈ QCoh(X ) then there is a surjective map

⊕
j H j −→ f∗F

with H j ∈ D and therefore a surjective map
⊕

j f ∗H j −→ f ∗ f∗F . Since f is affine the

map f ∗ f∗F −→ F is surjective.

Let us consider the first statement. Let G ∈ QCoh(Y) and set GX = G⊗OY
HomY ( f∗OX ,OY ). The map OY −→ f∗OX , which is locally split injective, induces a

surjective map
HomY ( f∗OX ,OY ) −→ OY

and therefore a surjective map GX −→ G. The sheaf GX is an f∗OX -module, so there

exists G′ ∈ QCoh(X ) such that f∗G′ ' GX . Thus, taking a surjection
⊕

j E j −→ G′ with

E ′j ∈ D and using that f∗ is exact we get the result.

Corollary 1.7. Let 0 be a finite stack over a field k (see Definition 3.1). Then there exists

E ∈ Vect(0) which generates QCoh(0). In particular 0 has the resolution property and it

satisfies Tannakian reconstruction.

Proof. Apply Lemma 1.6 to a finite atlas f : U −→ 0 with U finite k-scheme and

D = {OU }.
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8 F. Tonini and L. Zhang

2. Étale part and geometric connectedness

Through this section we consider given a field k.

Definition 2.1. Given a k-algebra A we set

Aét,k = {a ∈ A | ∃ a separable polynomial f ∈ k[x] s.t. f (a) = 0}.

Alternatively Aét,k is the union of all k-subalgebras of A which are finite and étale over

k. When the base field is clear from the context we will simply write Aét.

Remark 2.2. If A −→ B is a surjective map of k-algebras with nilpotent kernel then,

using the uniqueness of the lift of an étale morphism, we can conclude that Aét −→ Bét

is an isomorphism.

Remark 2.3. Let A be a k-algebra of characteristic p. The ith relative Frobenius of A is

given by

fi : A(i) = A⊗k k −→ A, a⊗ λ 7−→ a pi
λ.

If x =
∑

16 j6n a j ⊗ b j ∈ A(i) with ai ∈ A and b j ∈ k, then x pi
=
∑

16 j6n a pi

j ⊗ bpi

j =∑
16 j6n a pi

j b j ⊗ 1 = fi (x)⊗ 1 for all x ∈ A(i). In particular Ker fi = {x ∈ A(i) | x pi
= 0}.

Moreover the map (A(1))ét −→ Aét is an isomorphism. Indeed denote by B the image of

A(1) −→ A. Since A(1) −→ B is surjective with nilpotent kernel the map (A(1))ét −→ Bét

is an isomorphism. Since B contains all p-powers of A, we see that Aét = Bét.

Lemma 2.4. Let A be a finite k-algebra of characteristic p. There exists n ∈ N such that

the image of the relative Frobenius A(n) −→ A is an étale k-algebra. In particular the

residue fields of A(n) are separable over k.

Proof. We can assume that A is local with residue field L. Consider n ∈ N such that

pn > dimk A = dimk A(n). In particular the pn-power of the maximal ideal of A(n) is zero.

Taking into account Remark 2.3 we see that the image of A(n) −→ A is the residue field

of A(n), which also coincides with the residue field of L(n). If K is the maximal separable

extension of k inside L we have that x pn
∈ K for all x ∈ L. By Remark 2.3 we see that

the image of L(n) −→ L is contained in K and thus is separable over k.

Definition 2.5. If Y and Z are categories fibered in groupoids we define Y tZ as

the category fibered in groupoids whose objects over an affine scheme U are tuples

(U ′,U ′′, ξ, η) where U ′, U ′′ are open subsets of U such that U = U ′ tU ′′, ξ ∈ Y(U ′)
and η ∈ Z(U ′′).

We say that a category fibered in groupoids X is connected if H0(OX ) has no nontrivial

idempotents. We say it is reduced if any map U −→ X from a scheme factors through

a reduced scheme fpqc locally in U . We say that a morphism of categories fibered

in groupoids f : X −→ Y is geometrically connected (respectively reduced) if for all

geometric points Spec L −→ Y the fiber X ×Y L is connected (respectively reduced).
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Algebraic and Nori fundamental gerbes 9

Remark 2.6. If X is a stack in groupoids for the Zariski topology and Y,Z are open

substacks then one can always define a map Y tZ −→ X . In this situation X is connected

if and only if it cannot be written as a disjoint union of nonempty open substacks.

If X is a reduced category fibered in groupoids then H0(OX ) is a reduced ring. Indeed

if λ ∈ H0(OX ) then one can define the vanishing substack Y −→ X of λ, so that Y −→ X
is a closed immersion which is also nilpotent if λ is so. Let us prove that Y = X , that

is that if U −→ X is a map from a scheme then U ×X Y −→ U is an isomorphism. By

fpqc descent and the definition of reducedness we reduce the problem to the case when

U is reduced, where the result is clear.

If X is an algebraic stack then the notion of reducedness just defined and the classical

one coincides.

Lemma 2.7. Let X be a quasi-compact and quasi-separated fibered category over k. Then

(1) for all field extensions L/k we have

H0(OX )ét,k ⊗k L ' H0(OX×k L)ét,L

(2) the map X −→ Spec H0(OX )ét,k is geometrically connected;

(3) the fiber category X is geometrically connected over k if and only if H0(OX )ét,k = k.

Proof. It is clear that (2) H⇒ (3). Write A = H0(OX ) and notice that if k ⊆ B ⊆ Aét

and C is any B-algebra then

H0(OX×BC ) ' A⊗B C.

This follows from the fact that X −→ Spec B is quasi-compact and quasi-separated, so

that the notion of pushforward of quasi-coherent sheaves is well defined, and the fact

that B is a Von Neumann regular ring, that is all B-modules are flat or, equivalently,

all finitely generated ideals are generated by an idempotent: indeed B is a filtered direct

limits of its k-étale and finite subalgebras, which are easily seen to be Von Neumann

regular rings. This shows that we can assume X = Spec A and work only with algebras.

Let us prove (1). We have an inclusion Aét,k ⊗k L ⊆ (A⊗k L)ét,L . Given an element

u ∈ (A⊗k L) separable over L we must show that u ∈ Aét,k ⊗k L. Since u can be written

with finitely many elements of A and L and the same is true for the separable equation it

satisfies, we can assume that A/k is of finite type and L/k is finitely generated. Moreover

the result holds for the extension L/k if it holds for all subsequent subextensions in a

finite filtration k = k0 ⊆ k1 ⊆ · · · ⊆ kl = L, or if it holds for L ′/k, where L ⊆ L ′, because

of the inclusion

(Aét,k ⊗k L)⊗L L ′ ⊆ (A⊗k L)ét,L ⊗L L ′ ⊆ (A⊗k L ′)ét,L ′ .

In conclusion the problem can be split in the following cases: L/k is finite and Galois;

L = k and k −→ L is the Frobenius; k and L are algebraically closed: first assume

L algebraically closed, then assume L/k algebraic using the splitting k ⊆ k ⊆ L, then

assume L/k finite and, finally, split in separable and purely inseparable extensions

which are subextensions of a Galois extension and of a sequence of Frobenius extension

respectively.
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10 F. Tonini and L. Zhang

Assume first that L/k is finite and Galois with group G = Gal(L/k). The subalgebra

(A⊗k L)ét,L of A⊗k L is invariant by the action of G and therefore, by Galois descent,

we have

(A⊗k L)ét,L ' (A⊗k L)Gét,L ⊗k L .

Since (A⊗k L)ét,L is etale over L and therefore over k and (A⊗k L)Gét,L = (A⊗k L)ét,L ∩ A
we obtain the result.

Assume now that L = k and k −→ L is the Frobenius. We have a commutative diagram

of k-linear maps

Aét,k ⊗k L (A⊗k L)ét,L A⊗k L

Aét,k A

µ

δ

γAγAét,k

where the γ∗ are the relative Frobenius and A and Aét,k has to be thought of as L-algebras

in the bottom row. We must show that δ is an isomorphism. By Remark 2.3 µ and

γAét,k are injective because (A⊗k L)ét,L is reduced. It also follows that γAét,k is an

isomorphism because it is an L-linear injective map between two L-vector spaces of the

same dimension. Since Aét,k is the maximum L-étale subalgebra of A it follows that δ is an

isomorphism.

Assume now that k and L are algebraically closed. Notice that in this situation A is

connected if and only if Aét,k = k. Decomposing A into connected components we can

assume that A is connected. Since k and L are algebraically closed it follows that also

A⊗k L is connected and therefore that (A⊗k L)ét,L = L.

Let us now prove (2). Let α : Aét,k −→ L be a geometric point. We must prove that

(A⊗Aét,k L)ét,L = L. Let J be the kernel of α and F be its image, which is easily seen

to be a field. Thanks to (1) it is sufficient to prove that (A⊗Aét,k F)ét,F = (A/J A)ét,F is

just F . Let a ∈ A be such that its quotient lies in (A/J A)ét,F . Lifting also a separable

equation satisfied by a mod J to Aét,k , we can again assume that A is of finite type over

k and, moreover, that it is connected. In this case Aét,k is just a field, thus equal to F
and the result is obvious.

3. Some results on finite stacks

Let k be a field. In this section we collect some results about finite stacks that will be

used later. For many other properties look at [4, § 4].

Definition 3.1. A finite (respectively finite étale) stack 0 over a field k is a stack in the

fppf topology on Aff/k which has a finite (respectively finite étale) and faithfully flat

morphism U −→ 0 from a finite (respectively finite étale) k-scheme U . Equivalently 0 is

the quotient of a flat groupoid of finite (respectively finite étale) k-schemes.

Here is a nontrivial application of the Tannaka’s duality discussed in § 1 which

generalize [4, Proposition 4.3].
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Algebraic and Nori fundamental gerbes 11

Proposition 3.2. If 0 is a finite and reduced stack over k then 0 −→ Spec H0(O0) is

a gerbe.

Proof. We can assume 0 connected, so that L = H0(O0) is a field. Set C = Vect(0).
Since 0 is Tannakian reconstructible by Corollary 1.7, the functor 0 −→ 5C , which is

an L-map, is an equivalence. By [4, Lemma 7.15] we have C = QCohfp(0), which easily

implies that C is an L-Tannakian category and therefore 5C is a gerbe over L.

Lemma 3.3. If L/k is an algebraic extension of fields and 0 is a finite stack over L
then there exists a finite subextension F/k, a finite stack 1 over F with an isomorphism

0 ' 1×F L.

Proof. The stack 0 is the quotient of a groupoid s, t : R ⇒ U , where R, U are spectra of

finite L-algebras and s, t are faithfully flat. Since everything is of finite presentation, we

can descend the groupoid R ⇒ U to a finite subextension F/k, thus also 0.

Lemma 3.4. Let R ⇒ U be a flat groupoid with R and U finite over k. Then (R×s,t,U
R)ét = Rét×s,t,Uét Rét, the maps defining the groupoid R ⇒ U yields a structure of

groupoid on Rét ⇒ Uét with a map from R ⇒ U . Moreover if the residue fields of R
and U are separable over k, the same holds for (−)red in place of (−)ét and the resulting

groupoids are the same, where (−)red is the functor which takes, for any scheme X , its

reduced closed subscheme structure.

Proof. Using Lemma 2.4 and Remark 2.3, we can Frobenius twist the original groupoid

until R and U has separable residue fields, that is their reduced structures are étale. In

this case Rred −→ R −→ Rét is an isomorphism and similarly for U . The result follows

by expressing a groupoid in terms of commutative and Cartesian diagrams and using

the following fact: if V,W, Z are finite k-schemes whose reduced structures are étale and

V,W −→ Z are maps then

(V ×Z W )red = Vred×Zred Wred = Vét×Zét Wét = (V ×Z W )ét.

The above equalities follows because a product of étale schemes is étale and thus reduced.

Definition 3.5. Let 0 be a finite stack over k and let U −→ 0 be a finite atlas where U
is affine. We define 0ét,k as the quotient of the groupoid constructed in Lemma 3.4 with

respect to the groupoid R = U ×0 U ⇒ U . When k is clear from the context we will drop

the −k . By Lemma 3.6 below this notion does not depend on the choice of the finite atlas.

Lemma 3.6. Let 0/k be a finite stack and E/k be a finite and étale stack. Then the functor

Homk(0ét, E) −→ Homk(0, E) is an equivalence. Moreover for all j ∈ N the map 0ét −→

(0( j))ét is an equivalence and for j � 0 the functor 0( j)
−→ (0( j))ét has a section. In

particular for j � 0 the relative Frobenius 0 −→ 0( j) factors through 0ét.

Proof. The second part follows from Lemma 2.4 and Remark 2.3. For the first part

is enough to show that, if U is a finite k-scheme, then E(Uét) −→ E(U ) is an
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12 F. Tonini and L. Zhang

equivalence. Since U −→ Uét is finite, flat and geometrically connected by Lemma 2.7, it

follows that the diagonal U −→ R = U ×Uét U is a nilpotent closed immersion, so that

E(R) −→ E(U ) and the two maps E(U )⇒ E(R) induced by the projections R ⇒ U are

equivalences. Computing E(Uét) on the flat groupoid R ⇒ U we get the result.

Remark 3.7. If 0 is a finite stack over k and L/k is a field extension then, by Lemma 2.7

and the definition of 0ét,k , we have 0ét,k ×k L ' (0×k L)ét,L .

Remark 3.8. If 0 is a finite stack over F and F/k is a finite and purely inseparable

field extension then the natural morphism 0ét,F −→ 0ét,k ×k F ∼= (0×k F)ét,F is an

equivalence. Indeed 0→ 0×k F is the base change of the diagonal of Spec (F) by 0ét,F ,

thus it is a nilpotent thickening, so it induces an equivalence on the étale quotients.

Definition 3.9. A finite stack 0 over k is called local if 0ét,k = Spec k.

Remark 3.10. A closed substack of a finite and local stack is always local. Indeed if

1 is a closed substack of a finite and local stack 0 then, since 0 is connected and

thus topologically a point, the map 1 −→ 0 is a nilpotent closed immersion: using the

definition of the étale part from a presentation follows that 1ét = 0ét.

4. Nori fundamental gerbes

Definition 4.1 [4, § 5]. If Z is a category over Aff/k the Nori fundamental gerbe

(respectively étale Nori fundamental gerbe, local Nori fundamental gerbe) of Z/k is a

profinite (respectively pro-étale, pro-local) gerbe 5 over k together with a map Z −→ 5

such that for all finite (respectively finite and étale, finite and local) stacks 0 over k the

pullback functor

Homk(5, 0) −→ Homk(Z, 0)
is an equivalence. If this gerbe exists it is unique up to a unique isomorphism and it will

be denoted by 5N
Z/k (respectively 5N,ét

Z/k , 5N,L
Z/k) or by dropping the /k if it is clear from

the context.

Remark 4.2. If Z is a category fibered in groupoids over k a Nori gerbe exists over k if

and only if Z is inflexible over k, that is all maps from Z to a finite stack over k factors

through an affine gerbe over k (see [4, Definition 5.3 and Theorem 5.7]). This is the case

if Z is an affine gerbe over k. Moreover if Z is inflexible also the étale and local Nori

gerbe exist, 5N,ét
Z = (5N

Z )ét and 5N,L
Z = (5N

Z )L (see Definition B.11 and Remark 3.10).

The following result, although not stated elsewhere, is known by experts.

Proposition 4.3. Let Z be a quasi-compact and quasi-separated fibered category. Then Z
admits a Nori étale fundamental gerbe if and only if Z is geometrically connected over k.

Proof. Assume a Nori étale fundamental gerbe exists. If k ⊆ A ⊆ H0(OZ ) with A/k
étale, then by definition Z −→ Spec A factors through 5N,ét

Z . Since H0(O
5

N,ét
Z

) = k, the
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Algebraic and Nori fundamental gerbes 13

factorization tells us that A −→ H0(OZ ) factors through k. Thus H0(OZ )ét = k and Z
is geometrically connected by Lemma 2.7.

Assume now Z geometrically connected. The proof of the existence of 5N,ét
Z follows

the same proof given in [4, Proof of Theorem 5.7]. In our case I is the 2-category of

Nori reduced maps Z −→ 1 where 1 is an étale gerbe. Recall (see [4, Definition 5.10])

that Z → 1 is called Nori reduced if for any factorization Z → 0′→ 0, where 0′ is a

finite gerbe and 0′→ 0 is faithful, the map 0′→ 0 is an isomorphism. The only thing

that must be checked is that if Z f
−−→ 0 is a map to a finite and étale stack then there

exists a factorization Z α
−−→ 1 −→ 0 where 1 is an étale gerbe and α is Nori reduced.

Consider 1′ = Spec (O0/I) where I = Ker(O0 −→ f∗OZ ). The stack 1′ is finite, étale

and H0(O1′) is étale over k and contained in H0(OZ ), thus equal to k. So 1′/k is a

gerbe thanks to Proposition 3.2. The map Z −→ 1′ factors through a Nori reduced map

Z α
−−→ 1, where 1 is a finite gerbe, and 1 −→ 1′ is faithful. It follows that 1 is étale

because faithfulness means that the map on stabilizers is injective.

The following result generalize [4, Proposition 5.5].

Theorem 4.4. Let Z be a reduced, quasi-compact and quasi-separated fibered category.

Then Z is inflexible if and only if k is integrally closed inside H0(OZ ).

Proof. The only if part is [4, Proposition 5.4, (a)]. For the if part consider a map

f : Z −→ 0 where 0 is a finite stack. If I = Ker(O0 −→ f∗OZ ) then f factors through

Spec (O0/I), so that we can assume O0 −→ f∗OZ injective. So 0 is reduced, finite and

H0(O0) is a subalgebra of H0(OZ ) finite over k, thus equal to k by our assumption. By

Proposition 3.2 it follows that 0 is a finite gerbe.

5. Formalism for algebraic and Nori fundamental gerbes

Let k be a field and consider two categories X and XT over Aff/k together with a base

preserving functor πT : X −→ XT .

Definition 5.1. Set Tk(X ) = Vect(XT ), which is a pseudo-abelian, rigid, monoidal and

k-linear category. Moreover the functor π∗T : Tk(X ) −→ Vect(X ) is k-linear, monoidal

and exact. More generally if Y is a fibered category over Aff/k we have a natural functor

Homc
k(XT ,Y) −→ Homc

k(X ,Y).

By Definition 1.1 5Tk (X ) comes equipped with a k-map XT −→ 5Tk (X ) inducing

id : Tk(X ) −→ Vect(XT ). We will drop the −k when k is clear from the context.

We consider categories over k instead of just fibered categories over k in order to apply

this theory also to categories X like small sites of algebraic stacks.

We now introduce a list of axioms that will ensure nice Tannakian properties of T (X ).
In what follows by a finite (étale) stack over a ring R we mean a stack which is an

fppf quotient of an fppf groupoid of finite (étale), faithfully flat and finitely presented

R-schemes.
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14 F. Tonini and L. Zhang

Axioms 5.2. Set L = H0(OXT ) = EndT (X)(1T (X )) and consider:

A: T (X ) = QCohfp(XT );

B: the functor T (X ) −→ Vect(X ) is faithful;

C: for all finite and étale stacks 0 over L the following functor is an equivalence

HomL(XT , 0) −→ HomL(X , 0)

D: all L-maps from XT to a finite gerbe over L factors through a finite and étale gerbe

over L.

Remark 5.3. If char k = 0 and L = H0(OXT ) is a field then axiom D is automatic, because

all finite gerbes are also étale.

Lemma 5.4. Assume axiom A. Then T (X ) is a k-linear, abelian, monoidal and rigid

category and the exact sequences are pointwise exact.

Proof. We already know that T (X ) is k-linear, rigid and monoidal. In the category

QCohfp(XT ) cokernel can be taken pointwise. The result then follows because if α : F −→
G is a map of locally free sheaves over Spec (R) whose cokernel is locally free, then Ker(α)
is locally free and the formation of the kernel commutes with arbitrary base change.

Remark 5.5. If C is a k-linear and monoidal category and R = EndC(1C) then C has a

natural structure of R-linear category: if λ ∈ R and φ : x −→ y is a morphism in C we

define

λφ : x ' x ⊗ 1C
φ⊗λ
−−→ y⊗ 1C ' y.

Lemma 5.6. Let C be a k-linear, rigid, abelian and monoidal category and let F : C −→
Vect(Z), where Z is a nonempty category over Aff/k, be a k-linear, exact and monoidal

functor. If Z is connected and F is faithful then EndC(1C) is a field. If L = EndC(1C) is

a field then C, with its natural L-linear structure, is an L-Tannakian category and F is

faithful. In particular C is Tannakian recognizable and 5C is an affine gerbe over L.

Proof. Assume Z connected, F faithful and set R = EndC(1C). Let us show that it is a
field proving that if α ∈ R is nonzero then it is invertible in R. Since C is abelian consider

the exact sequence

0 −→ K −→ 1C
α
−−→ 1C −→ Q −→ 0.

Since F is exact, F(α) is an element of End(OZ ) = H0(OZ ) whose kernel and cokernel are

locally free. Thus for all ξ ∈ Z, we get a natural decomposition Spec ((OZ )ξ ) = Uξ t Vξ
where Uξ , Vξ are the opens where F(α)ξ is invertible and 0 respectively. This determines

an idempotent e ∈ H0(OZ ). Since this ring is connected by hypothesis then e = 0 or

e = 1, that is one of the following situations occur: F(α) = 0 so that α = 0 since F is

faithful; F(α) is an isomorphism, so that F(K) = F(Q) = 0 and, again by faithfulness of

F , K = Q = 0, which implies that α is an isomorphism. Thus R = L is a field.
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Algebraic and Nori fundamental gerbes 15

Assume now L = EndC(1C) is a field. Since Z is nonempty there exists ξ ∈ Z(A) for

some k-algebra A and the functor

G : C F
−−→ Vect(Z)

−ξ
−−→ Vect(A)

is k-linear, exact and monoidal. The L-linear structure on C induces an L-algebra

structure on A such that G is L-linear. From [6, 1.9, p. 114] it follows that C is an

L-Tannakian category and G is faithful. In particular also F is faithful.

As a consequence of Lemmas 5.4 and 5.6 we obtain:

Proposition 5.7. Assume axiom A and set L = H0(OXT ). If X is connected and axiom B
holds then L is a field. If L is a field then axiom B holds, so that T (X ) is an L-Tannakian

category, 5T (X ) is an affine gerbe over L and X −→ XT −→ 5T (X ) can be considered

as L-maps.

Theorem 5.8. Assume axiom A and that L = H0(OXT ) is a field (for instance if B holds

and X is connected), so that T (X ) is an L-Tannakian category by Proposition 5.7, where

L = H0(OXT ). If R −→ L is a map of rings and 0 is any stack in groupoids over R
satisfying Tannakian reconstruction, then the functor

HomR(5T (X ), 0) −→ HomR(XT , 0)

is an equivalence. In particular XT −→ 5T (X ) is universal among L-maps from XT to

an affine gerbe over L.

If axiom C also holds then X −→ (5T (X ))ét is the étale Nori fundamental gerbe of X
over L, so that Rep(5N,ét

X /L) ' Ét(T (X )) (see Definition B.11).

If both axioms C and D also holds, then 5̂T (X ) = (5T (X ))ét, so that Rep(5N,ét
X /L) '

EFin(T (X )) (see Definition B.11).

Proof. Since T (X ) and 0 are Tannakian recognizable and reconstructible respectively,

we have equivalences

HomR(5T (X ), 0) ' Hom⊗,R(Vect(0), T (X )) ' HomR(XT , 0).

The above map is easily seen to coincide with the map induced by XT −→ 5T (X ). Since

affine gerbes satisfies Tannakian reconstruction we get the universality of XT −→ 5T (X ).
Assume now C. Since finite stacks are Tannakian reconstructible by Corollary 1.7,

for all finite and étale stacks 0 the maps X −→ XT −→ 5T (X ) −→ (5T (X ))ét induces

equivalences

HomL((5T (X ))ét, 0) ' HomL(5T (X ), 0) ' HomL(XT , 0) ' HomL(X , 0)

as desired, where the first equivalence follows because (5T (X ))ét is the Nori étale quotient

of5T (X ) (see Definition B.11). Finally axiom D tells exactly that a morphism from5T (X )
to a finite stack factors through a finite and étale gerbe, which implies the result.

Remark 5.9. A map XT −→ Y should be thought of as a map X −→ Y together with an

extra-structure, namely the map XT −→ Y itself. For simplicity we can call such a pair
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16 F. Tonini and L. Zhang

a T -map X −→ Y. For instance in the concrete examples discussed later this will lead to

the notion of stratified, crystal and F-divided maps respectively. In particular one way

to rephrase the universal property stated in the above theorem is to say that the L-linear

T -map X −→ 5T (X ) is universal among L-linear T -maps from X to affine L-gerbes.

Remark 5.10. Under the hypothesis of Theorem 5.8 the L-gerbe 5T (X ) together with

the functor XT −→ 5T (X ) is the C -fundamental gerbe of XT over L, where C is the

class of all affine group schemes, in the sense of [5, Definition 5.6]. In particular XT −→
5̂T (X ) = 5EFin(T (X )) is the Nori fundamental gerbe of XT over L and XT is inflexible

if it is a fibered category. However, such a fundamental gerbe does not exist in general

as is explained in [4, Theorem 5.7, p. 13]. Moreover, XT is in general not a nice fibered

category in the cases which we consider in this paper (stratifications, crystals or F-divided

sheaves): it is unclear if XT admits an fpqc covering from a scheme. So we prefer not

to apply the general theory of fundamental gerbes on XT but just use it as a parameter

space.

From now on we assume that k has positive characteristic p. If Z is any category over

Aff/k we define the Frobenius pullback

F∗ : Vect(Z) −→ Vect(Z)
applying the pullback of the absolute Frobenius pointwise. The functor F∗ is Fp-linear,

exact and monoidal.

Definition 5.11. Given i ∈ N we define Ti (X ) as the category of tuples (F ,G, λ) where

F ∈ Vect(X ), G ∈ T (X ) and λ : F i∗F −→ G|X is an isomorphism. A morphism from

(F ,G, λ) to (F ′,G′, λ′) is a pair of morphisms φ : F → F ′ and ϕ : G → G′ which are

compatible with λ and λ′ in an obvious way. The category Ti (X ) is Fp-linear, monoidal

and rigid. We endow Ti (X ) with a k-structure via

k −→ EndTi (X )(OX ,OXT , idOX ), a 7−→ (a, a pi
).

Finally we regard Ti (X ) as a pseudo-abelian category with the distinguished set of

sequences which are exact pointwise. The forgetful functor Ti (X ) −→ Vect(X ) is k-linear,

monoidal and exact.

There is a k-linear, monoidal and exact functor

Ti (X ) −→ Ti+1(X ), (F ,G, λ) 7−→ (F , F∗G, F∗λ).

We define T∞(X ) as the direct limit of the categories Ti (X ). The category T∞(X ) is

k-linear, monoidal and rigid.

Remark 5.12. Given a category fibered in groupoids 0 over Fp we denote by

Hom(X ,XT , i, 0) the category of Fp-linear 2-commutative diagrams

X XT

0 0

π

f g
F0
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where F0 is the absolute Frobenius. Pulling back along f and g one obtains a

functor 80i : Hom(X ,XT , i, 0) −→ Hom⊗,Fp (Vect(0), Ti (X )) which is an equivalence

if 0 is Tannakian reconstructible. On the other hand using the universal property

of 5∗ in Definition 1.1 and the definition of Ti (X ) we see that 5Ti (X ) comes

equipped with a 2-commutative diagram χ ∈ Hom(X ,XT , i,5Ti (X )) such that Ti (X ) −→
Vect(5Ti (X ))

Ji
−−→ Ti (X ) is the identity, where Ji = 8

5Ti (X )

i (χ). Composing with χ we

obtain a functor

HomFp (5Ti (X ), 0) −→ Hom(X ,XT , i, 0)

which is an equivalence if 0 and Ti (X ) are Tannakian reconstructible and recognizable

respectively.

Lemma 5.13. There is a 2-commutative diagram

Vect(5Ti (X )) Ti (X )

Vect(5Ti (X )) Ti (X )

Ji

Ji

FTF∗

where FT (F,G, λ) = (F∗XF , F∗XT
G, F∗X λ), F is the absolute Frobenius of 5Ti (X ) and Ji

is defined in Remark 5.12. Moreover F i
T factors as Ti (X )

α
−→ T0(X )

β
−→ Ti (X ), where α is

the projection (F ,G, λ) 7→ G and β is the transition morphism defined in Definition 5.11.

Proof. The commutativity of the first diagram follows from the naturality of Frobenius

pullbacks and the definition of Ji . The second claim follows from the formula

(F i∗
X F , F i∗

X G, F i∗
X λ)

(λ,id)
−−−→ (G|X , F i∗

X G, id).

Theorem 5.14. Assume axiom A, that L = L0 = H0(OXT ) is a field and the following

property:

∀F ∈ QCohfp(X ), if F∗F ∈ Vect(X ) then F ∈ Vect(X ).

Then for all j ∈ N∪ {∞} the ring L j = EndT j (X )(1T j (X )) is a field, T j (X ) is an

L j -Tannakian category, the functors

T j (X ) T j+1(X ) T∞(X )

Vect(X )

are faithful, monoidal and exact, 5T j (X ) is an affine gerbe over L j and the functor

T j (X ) −→ Vect(X ) induces a map X −→ 5T j (X ), so that X is a category over L∞.

Moreover

L∞ = {x ∈ H0(OX ) | ∃i ∈ N such that x pi
∈ L0}
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18 F. Tonini and L. Zhang

is purely inseparable over L0,

EFin(Ti (X )) = {(F ,G, λ) ∈ Ti (X ) | G ∈ EFin(T0(X ))}, EFin(T∞(X )) ' lim
−→

i

EFin(Ti (X ))

and X −→ (5T∞(X ))L is the pro-local Nori fundamental gerbe of X over L∞.

If we also assume axiom C then X −→ 5̂T∞(X ) is the Nori fundamental gerbe of

X over L∞, so that Rep(5N
X /L∞

) ' EFin(T∞(X )), where all the notations here are in

Definition B.8.

Proof. Notice that T (X ) = T0(X ) is L0-Tannakian and T (X ) −→ Vect(X ) is faithful

thanks to Proposition 5.7. Let us show that the category Ti (X ) is abelian. If

(F ,G, λ) (α,β)
−−−→ (F ′,G′, λ′) is a map in Ti (X ), then there is an induced isomorphism

δ : F i∗(Cokerα) −→ (Cokerβ)|X , which implies that Cokerα ∈ Vect(X ) and that

(Cokerα,Cokerβ, δ) ∈ Ti (X ) is a cokernel. In this situation also kernels can be taken

pointwise so that we obtain a kernel for (α, β). The map Ti (X ) −→ Vect(X ) is faithful

because if (α, β) is a map as above with α = 0, then β|X = 0, which implies β = 0
because T (X ) −→ Vect(X ) is faithful. This implies that all the functors in the statements

are faithful and that T∞(X ) is an abelian category. In particular for i ∈ N the functor

Ti (X ) −→ Vect(X ) induces an isomorphism

L i = {(x, y) | x ∈ H0(OX ), y ∈ L0, x pi
= y} −→ {x ∈ H0(OX ) | x pi

∈ L0}.

Notice that H0(OX ) is reduced: if u ∈ H0(OX ) with un
= 0, then for i large

F i∗(OX /uOX ) ' OX /u piOX ' OX , and this implies that (OX /uOX ) ∈ Vect(X ) which

is possible only if u = 0. In particular it follows that L i is a field. Moreover L∞ is the

union of the L i , which implies that it is a field and that the description in the statement

holds. By Lemma 5.6 we conclude that the categories Ti (X ) and T∞(X ) are L i -Tannakian

and L∞-Tannakian respectively.

Let us consider now the equality about essentially finite objects of Ti (X ) in the

statement. The projection Ti (X )
α
−−→ T0(X ) is Z-linear, exact and monoidal. This gives

the inclusion ⊆. For the converse let χ = (F ,G, λ) ∈ Ti (X ) such that G ∈ EFin(T0(X ))
and denote by 0 the monodromy gerbe of χ , which is an L i -gerbe of finite type such

that Rep(0) = 〈χ〉 ⊆ Ti (X ) (see Definition B.8). We have to show that 0 is finite. Using

Lemma 5.13 and its notation we have a 2-commutative diagram

Rep(0) Ti (X )

Rep(0) Ti (X )
F i∗ F i

T

and, moreover, F i
T (χ) is essentially finite. Since Rep(0) is a sub-Tannakian-category

of Ti (X ) it follows that F i∗χ is essentially finite in Rep(0) and, since Rep(0) = 〈χ〉,
it follows that the ith absolute and therefore relative Frobenius of 0 factors through

a finite gerbe. Such a factorization continues to hold if we base change to L i , so

that 0×L i L i ' B G, where G is an affine group of finite type over L i whose relative

Frobenius G −→ G(i) factors through a finite group scheme. Since the relative Frobenius

is topologically surjective, we conclude that G is a finite group scheme as desired.
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Let us now prove the isomorphism between EFin(T∞(X )) and the limit in the statement.

Let χ ∈ T∞(X ) and χi ∈ Ti (X ) mapping to χ for some i . If χ is finite then clearly χi will

be finite up to replace i . If χ is instead a kernel of a map between finite objects, then

those objects and this map will be image of a map u of finite objects in some T j (X ). The

kernel of u is then a essentially finite objects of T j (X ) mapping to χ .

We now consider the claims about Nori gerbes. Let 8 be a finite stack over L∞ and

consider the map

HomL∞(5T∞(X ),8) −→ HomL∞(X ,8).

We have to prove that this is an equivalence if 8 is local and an equivalence in general

when axiom C holds. We can moreover assume that L0 = k. Using Lemma 3.3, we can

find a finite extension F/k, a finite stack 0 over F with an isomorphism 8 ' 0×F L∞.

The above map then becomes

90,F : HomF (5T∞(X ), 0) −→ HomF (X , 0).

Notice that F/k is a finite purely inseparable extension and thus 0/k is finite. Moreover

if 8 is local then 0/k is also local thanks to Remarks 3.7 and 3.8.

Thus if we know that 90,k and 9Spec (F),k are equivalences we can conclude that 90,F
is an equivalence. This shows that we can assume F = k. Set also 9 = 90,k .

We are going to use that finite stacks satisfies Tannakian reconstruction by

Corollary 1.7. Moreover the map Homk(XT , 0ét) −→ Homk(X , 0ét) is an equivalence if

0 is local (that is 0ét = Spec k) or in general if axiom C holds. Thus we can assume it is

an equivalence.

9 essentially surjective. Let X a
−−→ 0 be a k-map and consider the factorization

0 −→ 0ét −→ 0( j) of Lemma 3.6. We can extend the map X −→ 0ét to XT obtaining

a 2-commutative diagram
X XT

0 0ét 0( j)

a

and therefore, by Remark 5.12, a map e : 5T j (X ) −→ 0 inducing a : X −→ 0. The map

e is automatically k-linear because a is so and T j (X ) −→ Vect(X ) is faithful.

9 fully faithful. We are going to show that a map 5T∞(X ) −→ 0 factors through a map

5Ti (X ) −→ 0. Before doing that we show how to conclude that 9 is fully faithful. Let

α, β : 5T∞(X ) −→ 0 be two maps and δ : α|X −→ β|X be an isomorphism of functors

X −→ 0. The uniqueness of an extension is easy, because α, β correspond to maps

Vect(0) −→ T∞(X ) and T∞(X ) −→ Vect(X ) is faithful. We can assume that both α, β

factors through 5Ti (X ), so that, by Remark 5.12, they correspond to 2-commutative

diagrams
X XT

0 0(i)

α|X β|X vu
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where u, v are k-linear. By Lemma 3.6 there exists j > i and a factorization 0(i) −→

0
(i)
ét = 0ét −→ 0( j). Replacing i by j we can assume that u, v factor through 0ét −→ 0(i).

Since Homk(XT , 0ét) ' Homk(X , 0ét) we can lift the isomorphism δ : α|X −→ β|X to an

isomorphism u −→ v as required.

It remains to show that a k-linear, monoidal and exact map F : Vect(0) −→ T∞(X )
factors through some Ti (X ). We will use a slight modification of [4, Proposition 3.8]

and its proof. Pick S = Spec K −→ 5T∞(X ), where K is a field, an object corresponding

to ξ : T∞(X ) −→ Vect(K ) and set R j = S×5T j (X )
S. Given a K -scheme T an object of

R∞(T ) is a triple (u, v, γ ) where u, v : T −→ S and γ : u∗ ◦ ξ −→ v∗ ◦ ξ is a monoidal

isomorphism. Similarly, using the functor χ = χVect(T ) of Proposition A.2, an object of

(lim
←− j

R j )(T ) is a triple (u, v, γ̃ ) where u, v : T −→ S and γ̃ : χ(u∗ ◦ ξ) −→ χ(v∗ ◦ ξ) is

an isomorphism given by monoidal natural transformations. From this we can deduce

that R∞ ' lim
←− j

R j . Since a map from a scheme to a gerbe is an fpqc covering, the

map 5T∞(X ) −→ 0 is given by an object z ∈ 0(S) with an identification of the two

projections in 0(R∞) ' lim
−→i

0(R j ) satisfying the cocycle condition. Here we use that 0 is

finitely presented. This identification lies in some 0(R j ). Up to replace this j , we can also

assume that this identification satisfies the cocycle condition, which yields the desired

factorization.

Remark 5.15. If X is a reduced category fibered in groupoids over k and F ∈ QCohfp(X )
then F∗F ∈ Vect(X ) implies that F ∈ Vect(X ). Indeed let φ : V −→ X be a map from a

scheme. We must show that φ∗F is a vector bundle. Since X is reduced, by fpqc descent

we can assume that φ factors through a reduced scheme. This allow to assume that X is a

reduced scheme and also that X = Spec R, where R is a local ring, so that F∗F is free of

some rank r . Since the Frobenius is an homeomorphism, it follows that for all p ∈ X we

have dimk(p) F ⊗ k(p) = r . Nakayama’s lemma gives a surjective morphism φ : Rr
−→ F .

If v ∈ Kerφ, since φ is an isomorphism on each minimal prime ideal of R, it follows that

all entries of v are nilpotent and thus v = 0.

Theorem 5.16. Let Z be a reduced and inflexible category fibered in groupoids over

k and denote by π : Z −→ 5
N,ét
Z/k the structure morphism. Denote also by Ci the

monoidal and additive category of triples (E, V, λ) where E ∈ Vect(Z), V ∈ Rep(5N,ét
Z/k )

and λ : F i∗E −→ π∗V is an isomorphism and regard Ci as a k-linear category via

k −→ End(OZ ,O5
N,ét
Z/k

, 1), x 7→ (x, x pi
). By pulling back along the Frobenius of 5N,ét

Z/k we

obtain k-linear monoidal functors Ci −→ Ci+1. Then the Ci are k-Tannakian categories

and there is an equivalence of k-Tannakian categories lim
−→i

Ci ' Rep5N
Z/k , where the

structure morphism Rep5N
Z/k −→ Vect(Z) corresponds to the forgetful functor.

Proof. Consider Z = X −→ XT = 5
N,ét
Z/k . It is easy to see that this map satisfies axioms

A, B,C and D and L = H0(O
5

N,ét
Z/k

) = k. By [4, Proposition 5.4(a)] it follows that k is

integrally closed in H0(OZ ) and the result then follows from Theorem 5.14: we have

k = L0 = L∞, Ci = Ti (Z) and EFin(T0(X )) = T0(X ) implies EFin(T∞(X )) = T∞(X ).
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6. Stratification, crystal and Frobenius divided structures

In this section we apply the result of the previous section to find explicit morphisms

πT : X −→ XT for which the general theory works properly. In the next sections when

we talk about axioms we will always refer to the list of Axioms 5.2.

We start by introducing some geometric notions that will be used in the whole section.

Definition 6.1. A field extension L/k is called separable (respectively separably

generated) up to a finite extension if there exists an intermediate extension k ⊆ F ⊆ L
such that L/F is finite and F/k is separable (respectively separably generated)

(see [2, 030I]).

For instance any finitely generated field extension of k is separably generated up to a

finite extension.

Remark 6.2. If L/k is a separable extension and E/k is an algebraic and purely

inseparable extension then L ⊗k E is a field. Indeed Spec (L ⊗k E) −→ Spec L is an

homeomorphism and, by [2, 030W], is reduced.

Definition 6.3. Let X be a scheme. A point p ∈ X is called adically separated if the local

ring (OX,p,m p) is m p-adically separated, that is
⋂

n mn
p = 0.

Remark 6.4. We introduced this notion instead of considering just Noetherian rings

because, when studying F-divided sheaves, we have to consider Frobenius twists X (i)

of a scheme X , which may be not Noetherian even though X is so. For example, if k is

a field whose absolute Frobenius is not finite and L = k with k-structure given by the

Frobenius k −→ L, then L(1,k) = L ⊗k L is not Noetherian. The p-power of any element

in the kernel of the multiplication map δ : L ⊗k L −→ L is zero because

(∑
i

ai ⊗ bi

)p

=

∑
i

a p
i ⊗ bp

i = 1⊗
(∑

i

a p
i bp

i

)
= 1⊗ δ

(∑
i

ai ⊗ bi

)p

for all ai , bi ∈ L .

In particular L ⊗k L is a local L-algebra with residue field L. If L ⊗k L was Noetherian,

then the maximal ideal would be nilpotent and, because the residue field is a finite

extension of L, L ⊗k L would be a finite L-algebra. Thus L would be a finite extension

of k, contrary to our assumption.

Instead adically separatedness is maintained by Frobenius twists under some mild

hypothesis:

Lemma 6.5. Let (R,m) be an m-adically separated local ring defined over a field k of

positive characteristic and whose residue field is separable up to a finite extension over

k. Then, for all i ∈ N , R(i) is a local ring separated for the topology of its maximal ideal

and its residue field is separable up to a finite extension over k.
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Proof. Notice that R(1) is a local ring because the Frobenius of k is purely inseparable.

Denote by F the residue field of R. By hypothesis there exists k ⊆ E ⊆ F such that E/k
is separable and F/E is finite. By Remark 6.2 E (1) is a separable field extension of k.

Since F (1)/E (1) is finite, we see that also the residue field of R(1) is obtained as a separable

extension followed by a finite one. In particular we can assume i = 1.

Denote by m1 the maximal ideal of R(1). It is enough to show that R(1) is m1-adically

separated when m is nilpotent. Indeed if the image of
⋂

n mn
1 in (R/ml R)(1) is zero for all

l we have ⋂
n

mn
1 ⊆

⋂
l

(ml
⊗k k) =

(⋂
ml
)
⊗k k = 0.

By [2, 0320] the extension E/k is formally smooth. Thus there is a lifting E ⊆ R. In

particular

R(1,k) = R⊗k k ' R⊗E E (1,k).

Since E (1,k) is a field the relative Frobenius E (1,k) −→ E is injective and, applying R⊗E −,

we see that also R(1,k) −→ R(1,E) is injective. This allows us to reduce the problem to

the case that F/k is a finite extension. In particular F (1) is Artinian. Thus a power of

m1 lies in the kernel of R(1) −→ F (1), which is m⊗k k. Since this last ideal is nilpotent,

we get that m1 is nilpotent too.

Lemma 6.6. Let (R,m) be an m-adically separated ring and M be a finitely generated

R-module. Then M is free if and only if M/mn M is a free R/mn-module for all n ∈ N.

Proof. We have to prove ⇐H. Lifting a basis of M/mM we can define a surjective

morphism φ : Rl
−→ M , which will be an isomorphism after tensoring by R/mn R by

hypothesis. So if v ∈ Kerφ, it becomes 0 on all the quotients (R/mn R)l and therefore

v ∈ (
⋂

n mn)l = 0 as desired.

6.1. Stratifications and crystals

Definition 6.7. Let π : X −→ Aff/k be a category over Aff/k. We define the big

infinitesimal site Xinf/k of X as the category of pairs (ξ, j) where ξ ∈ X and j : π(ξ) −→
T , where T is an affine k-scheme, is a nilpotent closed immersion. A morphism

(ξ, π(ξ)
j
−−→ T ) −→ (ξ ′, π(ξ ′)

j ′
−−→ T ′) is a pair (α, β), where α : ξ −→ ξ ′ and β : T −→ T ′

are such that the following diagram is commutative

π(ξ) T

π(ξ ′) T ′

j

π(α) β

j ′

An object (ξ, π(ξ)
j
−−→ T ) ∈ Xinf/k is called extendable if there exists a map ξ −→ η in

X such that π(ξ) −→ π(η) factors through π(ξ) −→ T . If X is a fibered category this

simply means that ξ : π(ξ) −→ X extends along π(ξ) −→ T . We define the big stratified

site Xstr/k of X as the full subcategory of extendable objects of Xinf/k . We will consider
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Xstr/k and Xinf/k as categories over k via the association (ξ, j : π(ξ) −→ T ) 7−→ T . Notice

that there is a canonical map X −→ Xstr/k ⊆ Xinf/k of categories over Aff/k given by

ξ 7−→ (ξ, idπ(ξ)). If X is a fibered category over k then also Xstr and Xinf are fibered

categories.

Let Y be a fibered category over k. Following notations and definitions from

Definition 5.1 we define the following objects:

• if X −→ XT = Xstr/k then Tk will be replaced by Strk and an object of Strk(X ,Y) =
Homc

k(Xstr/k,Y) will be called a stratified map, while an object of Strk(X ) =
Vect(Xstr/k) a stratified sheaf on X .

• If X −→ XT = Xinf/k then Tk will be replaced by Crysk and an object of Crysk(X ,Y) =
Homc

k(Xinf/k,Y) will be called a crystal map, while an object of Crysk(X ) = Vect(Xinf/k)

a crystal of sheaves on X .

When k is clear from the context it will be omitted.

If Z is a scheme and X is the category of open subsets of Z then Crys(X ) is, by

construction, the usual category of crystals of sheaves. Although we do not prove it here,

it is possible to show that the restriction Crys(Z) −→ Crys(X ) is an equivalence. In this

paper we prefer to consider the big site Aff/Z instead of the small Zariski site to extends

the theory to algebraic stacks and fibered categories.

The main result of this section is the following theorem:

Theorem 6.8. Let Z be a category fibered in groupoids over k. Then:

(1) axiom C holds for Z −→ Zstr and Z −→ Zinf;

(2) axiom A implies axiom B for Z −→ Zstr and Z −→ Zinf;

(3) axioms A and B hold for Z −→ Zstr if Z admits an fpqc covering U −→ Z where U
is a scheme over kperf such that all its nonempty closed subsets contain an adically

separated point (see Definition 6.3); if moreover Z is connected and there exists a

map Spec L −→ Z where L/k is a field extension which is separably generated up

to a finite extension (see Definition 6.1) then H0(OZstr/k ) = H0(OZ )ét,k ;

(4) axiom A and B holds for Z −→ Zinf if Z is an algebraic stack locally of finite type

over k; moreover in this case H0(OZinf/k ) = H0(OZ )ét,k .

Proof of Theorem 6.8(1). This follows by definition, because a map to something étale

extends uniquely along a nilpotent closed immersion.

Remark 6.9. If Y is a fibered category there are functors Crysk(X ,Y),Strk(X ,Y) −→
Homc

k(X ,Y) and there is a map Crysk(X ,Y) −→ Strk(X ,Y) over Homc
k(X ,Y). Moreover

if X is defined over a field extension L of k there is a forgetful functor Xinf/L −→ Xinf/k
maintaining the stratified sites and inducing maps

Crysk(X ,Y) −→ CrysL(X ,Y ×k L), Strk(X ,Y) −→ StrL(X ,Y ×k L).

Lemma 6.10. Let i : X −→ X ′ be a nilpotent closed immersion of categories fibered

in groupoids over k and Y be a fibered category over k. Then the restriction
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Crys(X ′,Y) −→ Crys(X ,Y) is an equivalence. If i admits a retraction then also

Str(X ′,Y) −→ Str(X ,Y) is an equivalence.

Proof. We will consider only the stratified case since the crystal one is completely

analogous. There is a restriction functor ψ : Xstr −→ X ′str obtained by composing with

i : X −→ X ′. Using the pullback along i we also get a morphism φ : X ′str −→ Xstr

(the extendability condition is preserved). It is easy to define base preserving natural

transformations φ ◦ψ −→ id and ψ ◦φ −→ id. Since stratified maps sends all arrows to

Cartesian arrows, it follows that Str(X ,Y) −→ Str(X ′,Y) obtained by composing with φ

is a quasi-inverse of the map in the statement.

Usually stratified sheaves for a scheme are defined using higher diagonals. In the

following proposition we show that our definition is equivalent to the classical one. Let

us recall the definition of higher diagonals.

Definition 6.11. Let S be a base scheme and X be an S-scheme. The nth diagonal of X
over S at level r ∈ N, denoted Pn

X/S(r) is defined as follows: pick an open U ⊆ X×S(r+1)

containing the diagonal as a closed subscheme with ideal sheaf I and set Pn
X/S(r) =

Spec (OU/In+1).

Proposition 6.12. Let X be a k-scheme and Y be a Zariski stack over Aff/k. The category

Str(X,Y) is canonically equivalent to the category Ŝtr(X,Y) whose objects are tuples

(η, σn)n∈N where η ∈ Y(X) and (σn)n∈N is a compatible system of isomorphisms between

the two pullbacks of η to Y(Pn
X/k) satisfying the cocycle condition on Y(Pn

X/k(2)), while

the morphisms are maps in Y(X) compatible with the σn.

Proof. Let F ∈ Str(X,Y) be an object and consider the maps

X
jn // Pn

X/k(2)

p12
))p23 //

p13 55
Pn

X/k

p1
++

p2

33 X

where pi and pi j are the projections. Since all the maps X −→ Pn
X/k(r) are nilpotent

closed immersions with a retraction for all n, r ∈ N, by Lemma 6.10 we see that applying

Str(−,Y) to the above sequence of maps we get a sequence of equivalences. This

easily yields compatible maps σn : p∗2F
'
−−→ p∗1F in Str(Pn

X/k,Y) satisfying the cocycle

condition in Str(Pn
X/k(2),Y). Applying the natural functor Str(−,Y) −→ Hom(−,Y) '

Y(−) we obtain an object of Ŝtr(X,Y). The association just defined extends to a functor

Str(X,Y)→ Ŝtr(X,Y).
A quasi-inverse can be defined as follows. For all χ = (U −→ T ) ∈ Xstr, where U

is an X -scheme, choose an extension gχ : T −→ X . Given (η, σn)n∈N ∈ Ŝtr(X,Y) define

8X ((η, σn)n∈N) = F ∈ Str(X,Y) as follows. For χ ∈ Xstr set F(χ) = g∗χη. Given a map

ψ : χ −→ χ ′ over T
α
−−→ T ′ we have to specify a Cartesian arrow F(ψ) : g∗χη −→ g∗

χ ′
η over

α. By construction U −→ T
(gχ ′α,gχ )
−−−−−→ X × X factors through the diagonal. Since U −→ T

is nilpotent, we get a factorization of (gχ ′α, gχ ) : T
β
−−→ Pn

X/k ⊆ X × X for some n ∈ N.
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The map F(ψ) is g∗χη ' β
∗ pr∗2 η

β∗σn
−−−→ β∗ pr∗1 η ' α

∗g∗
χ ′
η −→ g∗

χ ′
η. The compatibility

among the σ j tell us that F(ψ) does not depend on the choice of n, while the cocycle

condition and a similar argument show that F is indeed a functor.

One can show that the two functors are quasi-inverse of each other.

Lemma 6.13. Let R be a k-algebra, I be a nilpotent ideal and L/k be a field extension with

a k-map L −→ R/I . Then there exists an fpqc covering R −→ R′ and an isomorphism

R′/I R′ ' R/I ⊗L Lperf, where Lperf is the perfect completion of L.

Proof. A proof is required only if p = char k > 0. We show how to construct the ring

R′ when Lperf is replaced by L1/p. A simple induction on N will then give the desired

algebra. By Zorn’s lemma there exists a maximal subset S ⊆ L − L p such that

for all finite T ⊆ S the map LT = L[X t ]t∈T /(X
p
t − t) −→ L1/p is injective.

Moreover it is easy to show that L1/p
' limT LT . For all t ∈ S let t̂ ∈ R be a lifting and

set

RT = R[X t ]t∈T /(X
p
t − t̂) for T ⊆ S finite and R′ = lim

T
RT .

It is now easy to prove that R′/I R′ ' R/I ⊗L L1/p as required.

Proof of Theorem 6.8(2). Let C = Str(Z) or C = Crys(Z), By Lemma 5.4 the category

C is abelian, thus one has to show that if F ∈ C and F|Z = 0 then F = 0. This follows

because if j : U −→ T is a nilpotent closed immersion and E ∈ Vect(T ) is such that

j∗E = 0 then E = 0.

Proof of Theorem 6.8(3), first sentence. Let F ∈ Str(Z,QCohfp). Since the objects of

Zstr are extendable by definition, it is enough to show that F|Z ∈ QCohfp(Z) is locally

free in oder to conclude that F ∈ Str(Z). Using the existence of an atlas as in the

statement, fpqc descent and Lemma 6.6 we can reduce the problem to the case Z =
Spec R, where (R,m) is a local ring defined over kperf and with m nilpotent. Using the

restriction Strk(Z) −→ Strkperf(Z) we can also assume k-perfect. By Lemma 6.13 applied

when I the maximal ideal of R and L is its residue field we can assume that L is perfect.

Since an extension of perfect fields is formally smooth (see [2, 031U]), we can assume that

the nilpotent closed immersion Spec L −→ Spec R has a retraction σ : Spec R −→ Spec L.

Thanks to Lemma 6.10, there exists G ∈ Str(Spec L ,QCohfp) restricting to F along the

retraction σ . In particular

F(idR,Spec R
id
−−→ Spec R) ' G(σ,Spec R

id
−−→ Spec R) ' σ ∗G(idL ,Spec L

id
−−→ Spec L)

is free as required.

Example 6.14. If we do not assume that the scheme U in Theorem 6.8(2) is defined over

kperf then the conclusion is false, even if U is the spectrum of an Artinian ring. Consider

k = Fp(z), L = kperf and A = L[x]/(x2). We regard A as a k-algebra via the morphism

λ : k −→ A mapping z to z− x . We are going to construct an object F ∈ Strk(A,QCohfp)

which is not a vector bundle. Write x = z− λ(z) and let yn ∈ L such that y pn

n = z. If J
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is the ideal of the diagonal in A⊗k A we have

x ⊗ 1− 1⊗ x = z⊗ 1− 1⊗ z = (yn ⊗ 1− 1⊗ yn)
pn
∈ J pn

.

By Proposition 6.12 we can conclude that A
x
−−→ A is a map in Strk(A), where A is the

trivial object. Since in Strk(A,QCoh) we can take cokernels pointwise, we can conclude

that A/x has a stratification, even though is not locally free.

This also show that Strk(A) −→ Strk(L) is not an equivalence even though Spec L −→
Spec A is a nilpotent closed immersion. To see this we prove that Strk(L) ' Vect(L).
Indeed for l ∈ N let Jl = Ker(L⊗k l µl

−−→ L). If x ∈ Jl , since L⊗k l is perfect, there exists

y ∈ L⊗k l such that y p
= x . Since µl(x) = µl(y)p we see that y ∈ Jl , so that J 2

l = Jl .

Thus all higher diagonals of Spec L over k are trivial, which implies the result.

Lemma 6.15. If V is an affine scheme over k and χ ∈ Vinf there exists χ ′ = (idV , V −→
T ′) ∈ Vinf and a map χ −→ χ ′. If V is of finite type over k we can furthermore assume

that T ′ is of finite type too.

Proof. Set V = Spec A, and consider a ring B with a nilpotent ideal I and a map φ : A −→
B/I . Set π : B −→ B/I the projection and write A = k[x]/J , where x = (xs)s∈S is a set of

variables. For all s ∈ S choose bs ∈ B such that π(bs) = φ(xs) and denote ψ : k[x] −→ B
the map such that ψ(xs) = bs . Since ψ(J ) ⊆ I and I is nilpotent, there exists n ∈ N such

that J n
⊆ Ker(ψ). We can therefore choose T ′ = Spec (k[x]/J n). If V is of finite type then

S can be chosen finite and therefore also the last claim holds.

Proof of Theorem 6.8(4), first sentence. Let F ∈ Crys(Z,QCohfp) and (ξ, V
j
−−→ T ) ∈

Zinf. We must show that F(ξ, j) ∈ QCohfp(T ) is locally free. Let U −→ Z be a smooth

atlas. There are Cartesian diagrams

T ′ T

V ′ VU V

U Z

jj ′

where the map T ′ −→ T is étale and surjective. The above diagram is obtained using

that the smooth surjective map VU −→ V has sections in the étale topology and that

the étale map V ′ −→ V always extends along a nilpotent closed immersion by [1, Exposé

VIII, Theorem 1.1]. By descent we can assume Z = U and, since the problem is Zariski

local, that U is affine. By Lemma 6.15 we can further assume that V = U , ξ = id and

that T is of finite type over k. Using Lemma 6.10, there exists G ∈ Crys(T ) restricting to

our F ∈ Crys(U ). In particular

F(idU ,U
j
−−→ T ) ' G( j,U

j
−−→ T ) = G(idT , T

id
−−→ T ) = (G|Tstr)(idT , T

id
−−→ T ).

This sheaf is locally free because T ×k kperf
−→ T is an fpqc atlas, T ×k kperf is

Noetherian and therefore, by Theorem 6.8(2), G|Tstr ∈ Str(T ).
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Example 6.16. Let k = Fp(z) and L = kperf. We are going to construct a F ∈
Crysk(L ,QCohfp) such that F /∈ Crysk(L). More precisely we construct a nonzero

a : O(Spec L)inf −→ O(Spec L)inf which is 0 in Strk(L) = Vect(L) (see Example 6.14) and

show that F = Coker(a) (pointwise) satisfies the requirements. In particular if follows

that Crysk(L) −→ Strk(L) is not faithful. Let χ ∈ (Spec L)inf given by a map L −→ B/I ,

where B is a k-algebra and I a nilpotent ideal. Using the Frobenius it is easy to show that

there exists a unique Fp-linear map φχ : L −→ B lifting the given k-map L −→ B/I . The

map a we are looking for is given by a(χ) = φχ (z)− z. We have a(idL , idL) = 0 so that

a = 0 in Strk(L). Consider B = L[x]/(x2) with the k-structure λ : k −→ B, λ(z) = z− x ,

I = (x). If χ ∈ (Spec L)inf is the corresponding object, by construction a(χ) = x 6= 0 in

B and therefore F(χ) = B/x which is not locally free.

Lemma 6.17. Let K be a purely transcendental field extension over a field k of positive

characteristic and L/K be a finite separable extension. Then the intersection of all fields

E such that L(i) ⊆ E ⊆ L and L/E is finite coincides with the image of the relative

Frobenius L(i) −→ L.

Proof. Notice that L(i) is a field by Remark 6.2 because L/k is separable. In particular

we will identify L(i) with its image under the relative Frobenius. Let {zs}s∈S be a

transcendental basis of K/k and let α ∈ L such that L = K (α). Given T ⊆ S set

KT = k(zs | s /∈ T, z pi

s | s ∈ T ) ⊆ K = k(zs)s∈S .

We have that L(i) = KS(α
pi
) ⊆ KT (α

pi
) and that L is finite over KT (α

pi
) if T is finite.

Since K/KT is purely inseparable and α pi
is separable over KT , KT [α

pi
]⊗KT K is a

field. It follows that, for all T , the surjective map KT [α
pi
]⊗KT K −→ K [α pi

] is an

isomorphism. Thus we have the equality

n := [KT (α
pi
) : KT ] = [K (α pi

) : K ].

Let β ∈ KT (α
pi
) for all T finite. Then β can be written uniquely as a linear combination

of 1, α pi
, · · · , α(n−1)pi

with coefficients in KT . Since β ∈ KT (α
pi
) for all T finite it follows

that the coefficients of the linear combination lie in the intersection of all KT for T finite.

This intersection is KS , so that β ∈ KS(α
pi
) = L(i).

Lemma 6.18. Let S be a base scheme and f : Y −→ X be an étale map of S-schemes.

Then the following commutative diagrams are Cartesian for all i = 1, 2.

Pn
Y/S Pn

X/S

Y X

fn

f
pipi

Here the pi ’s are the projections, while fn is the map induced by f × f : Y ×S Y −→
X ×S X .
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Proof. We have Cartesian diagrams

Y Zi Y

X Pn
X/S X

αi

pi

ff

Notice that Z1 is a subscheme of Y ×S X , while Z2 is a subscheme of X ×S Y . Since

X −→ Pn
X/S is a nilpotent closed immersion and the maps Zi −→ Pn

X/S are étale, by

[1, Exposé VIII, Théorème 1.1], there exists an isomorphism λ : Z1 −→ Z2 over Pn
X/S

and such that λ ◦α1 = α2 : Y −→ Z2. The first projection Pn
Y/S −→ Y induces a map

Pn
Y/S

a
−−→ Z1. We must show this map is an isomorphism. We have a commutative diagram

Pn
Y/S Z1 Y ×S Y X ×S Y Y

Y Y ×S X X ×S X X
f

λ′

p2ba

fp2
p2

where the square diagrams are Cartesian, the map λ′ is the composition Z1
λ
−−→ Z2 −→

X ×S Y and the map b is induced by the universal property of the fibered product.

Notice that b is a monomorphism because λ′ is a monomorphism. The equality λ ◦α1 =

α2 : Y −→ Z2 implies that Y −→ Z1
b
−−→ Y ×S Y is the diagonal. Since Y −→ Z1 is, by

construction, a nilpotent closed immersion whose sheaf of ideal to the power n vanishes, it

follows that b factors through Pn
Y/S . Thus it is enough to show that Pn

Y/S
a
−−→ Z1

b
−−→ Y ×S

Y is the inclusion. By construction p1 = p1 ◦ (ba) and we must prove that p2 = p2 ◦ (ba).
By the commutativity of diagram above we obtain a map

γ : Pn
Y/S

(p2,p2◦(ba))
−−−−−−−→ Y ×X Y

whose composition along Y −→ Pn
Y/S is the diagonal. Since Y −→ X is étale, it follows

that the diagonal is an open immersion. Since Y −→ Pn
Y/S is an homeomorphism, it

follows that γ factors through the diagonal, that is p2 = p2 ◦ (ba) as required.

Proposition 6.19. Let L/k be a field extension separably generated up to a finite extension.

Then EndStrk (L)(1) = L ét,k .

Proof. Applying Proposition 5.7 we can conclude that EndStrk (L)(1) is a subfield of L.

If E/k is a separable and finite field extension then (Spec E)Str/k = (Spec E)Str/E and

therefore Strk(E) = Vect(E). By functoriality this implies L ét,k ⊆ EndStrk (L)(1). So we

concentrate on the other inclusion. We first deal with a particular case.

The case L/k finite and purely inseparable when char k > 0. We have to prove that

EndStrk (L)(1) = k. Set A = L ⊗k k, which is a local and finite k-algebra with residue field
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k. Since the maximal ideal of A is nilpotent, by Lemma 6.10 we see that EndStrk (A)(1) = k.

Using the functor Strk(L) −→ Strk(A) we can conclude that EndStrk (L)(1) is contained in

the intersection of L and k inside A = L ⊗k k, which coincides with k.

Coming back to the general statement, we proceed by making some reductions.

Consider K ⊆ F ⊆ L where K is purely transcendental, F/K is algebraic and separable

and L/F is finite and purely inseparable. In what follows we will use Remark 6.2 several

times.

Reduction to the perfect case when char k > 0. Let kperf be the perfect closure of k and

assume to know that the statement of the theorem holds for perfect fields. Consider the

map

Strk(L) −→ Strkperf(L ⊗k kperf).

The ring L ⊗k kperf is a finite extension of the field F ⊗k kperf and therefore it is a

local kperf-algebra with a nilpotent maximal ideal. In particular, by Lemma 6.10 and

by [2, 0321], Strkperf(L ⊗k kperf) = Strkperf(E), where E is the residue field of L ⊗k kperf.

Moreover (L ⊗k kperf)ét,kperf = Eét,kperf . We can therefore conclude that EndStrk (L)(1) lies

in the intersection of L and (L ⊗k kperf)ét,kperf inside L ⊗k kperf. This intersection is L ét,k
because, using Lemma 2.7, we have

L ⊗L ét,k (L ⊗k kperf)ét,kperf ' L ⊗L ét,k (L ét,k ⊗k kperf) ' L ⊗k kperf.

Reduction to the separably generated case when char k > 0. Assume to know that the

statement of the theorem holds for separably generated field extensions. The ring L(i,K )

is a finite and local algebra over the field F (i,K ). Moreover its residue field Ei is contained

in K (L pi
). Since L/F is finite and purely inseparable we can choose i such that Ei ⊆ F .

There are functors

Strk(L) −→ Strk(L(i,K )) −→ Strk(F)

which implies that EndStrk (L)(1) lies in Fét,k . Notice that here, to be precise, the

k-structure of F is the one given by k −→ k −→ F , where the first map is the ith power of

the Frobenius. Since k is perfect, F , with this new structure, is still a separably generated

extension of k.

Reduction to the case L/K finite. Let β ∈ EndStrk (L)(1). We claim that β ∈

EndStrk (K (β))(1).
Given a field extension Q/k and denote by JQ ⊆ Q⊗k Q the ideal of the diagonal.

Recall that by Proposition 6.12 we have that EndStrk (Q)(1) is the intersection of all

Qn = Ker(Q
id⊗1−1⊗id
−−−−−−−→ (Q⊗k Q)/J n

Q).

It is enough to prove that, if Q/E is an algebraic and separable extension, then the map

γ : (E ⊗k E)/J n
E −→ (Q⊗k Q)/J n

Q

is injective for all n. Since the ideal JQ is generated by elements of the form q ⊗ 1− 1⊗ q
for q ∈ Q, it is easy to show that the functor Q 7→ (Q⊗k Q)/J n

Q commutes with filtered

direct limits. In particular, for the injectivity of γ , one can assume that Q/E is finite. In

this case the result follows from Lemma 6.18.
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We can therefore assume that L/K is a finite and separable extension.

Computation via relative Frobenius when char k > 0. We show that

EndStrk (L)(1) =
⋂

j

L( j). (1)

Here we are identifying L( j) with the image of the relative Frobenius φ j,L : L( j)
−→ L.

⊇ By Proposition 6.12 we have that EndStrk (L)(1) is the intersection of all

Ln = Ker
(
L

id⊗1−1⊗id
−−−−−−−→ (L ⊗k L)/J n)

where J is the ideal of the diagonal. Since

φ j,L

(∑
q

zq ⊗ λq

)
⊗ 1− 1⊗φ j,L

(∑
q

zq ⊗ λq

)
=

∑
q

λq(zq ⊗ 1− 1⊗ zq)
p j
∈ J p j

we get Imφ j,L ⊆ L p j for all j .
⊆ If k ⊆ E ⊆ L is an intermediate field extension with L/E finite and purely inseparable

then EndStrE (L)(1) = E . Using the functor Strk(L) −→ StrE (L) we see that EndStrk (L)(1) ⊆
E . By Lemma 6.17 we can conclude that EndStrk (L)(1) ⊆ L( j) for all j ∈ N.

Conclusion. Let x ∈ EndStrk (L)(1). We are going to show that x ∈ L is algebraic over k.

Since L/k is separably generated, this will imply x ∈ L ét,k . Write K = k(zs)s∈S .

Assume by contradiction that x is transcendental and let f (X) = Xn
+ a1 Xn−1

+

· · ·+ an be the minimal polynomial of x over K . If char k > 0 we make the following

simplification. Since k is perfect, an element a of K lies in ∈ K (r) if and only if there

exists b ∈ K such that bpr
= a. This implies that

⋂
r∈N K (r)

= k. Since f (X) /∈ k[X ], there

exists a maximum r ∈ N such that f (X) ∈ K (r)
[X ]. On the other hand x ∈ EndStrk (L)(1) =

EndStrk (L(r))(1) by (1), L(r)/K (r) is finite and separable, K (r) is purely transcendental and

f (X) is also the minimal polynomial of x over K (r). Thus if char k > 0 we can further

assume that f (X) /∈ K (1)
[X ], that is r = 0.

Since x ∈ EndStrk (L)(1) and thanks to Proposition 6.12, we have 0 = d(x) = x ⊗ 1−
1⊗ x ∈ I/I 2

' �L/k where I is the ideal of the diagonal in L ⊗k L. Thus 0 = d( f (x)) =
d(a1)xn−1

+ · · ·+ d(an). Since L/K is finite and separable, {d(zs)}s∈S is a free basis of

�L/k . Since f is the minimal polynomial we can conclude that ∂ai/∂zs = 0 for all i and

s. If char k = 0 this implies f (X) ∈ k[X ] contradicting the assumption. If char k > 0 this

tells us that f (X) ∈ K (1)
[X ], which is again a contradiction.

Proof of Theorem 6.8(3), second sentence. Since axioms A and B holds and Z is

connected, by Proposition 5.7 we know that H0(OZstr) = F ⊆ H0(OZ ) is a field. By

pulling back via Spec L −→ Z we get a map F −→ H0(O(Spec L)str) = EndStr(L/k)(1) =
L ét,k , where we have used Proposition 6.19. So F ⊆ H0(OZ )ét,k . The other inclusion

follows pulling back along Z −→ Spec H0(OZ )ét,k and using again Proposition 6.19.

Proof of Theorem 6.8(4), second sentence. We can assume Z connected and set

F := H0(OZinf
) ⊆ H0(OZ ).

Using the map Crys(Z) −→ Str(Z) we can conclude that F ⊆ H0(OZ )ét. The other

inclusion follows pulling back along Z −→ Spec H0(OZ )ét,k : If Q/k is a separable and

finite field extension then (Spec Q)inf/k = (Spec Q)inf/Q so that Crys(Q/k) = Vect(Q).
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6.2. F-divided structures

In this section we fix a base field k with positive characteristic p.

Definition 6.20. Let Z be a category fibered in groupoids over k. The chain of relative

Frobenius of Z
Z −→ Z(1,k)

−→ Z(2,k)
−→ · · ·

defines a direct system of fibered categories over k indexed by N and we will denote by

Z(∞,k) its limit, which is a category fibered in groupoids over k (see Proposition A.4). Let

Y be a fibered category over k. Following notations and definitions from Definition 5.1

we define the following objects: if X = Z, XT = Z(∞,k) and the map X −→ XT is

the one induced by the limit, then Tk will be replaced by Fdivk and an object of

Fdivk(Z,Y) = Homc
k(Z

(∞,k),Y) will be called an F-divided map, while an object of

Fdivk(Z) = Vect(Z(∞,k)) an F-divided sheaf. When k is clear from the context it will

be omitted.

Using Remark A.3 and Proposition A.4 we have a more concrete description, which

will be the one used in this paper.

Proposition 6.21. Let Y be a fibered category and Z be a category fibered in groupoids

over k. Then Fdiv(Z,Y) is equivalent to the category of objects (Qn, σn)n>0 where

Qn : Z(n)
−→ Y is a k-map and σn : Qn+1 ◦ Rn −→ Qn are isomorphisms, where

Rn : Z(n)
−→ Z(n+1) is the relative Frobenius. Under this equivalence the functor

Fdiv(Z,Y) −→ Hom(Z,Y) is given by (Qn, σn)n>0 7−→ Q0.

Remark 6.22. If k is perfect there is a even more concrete description of F-divided

sheaves: Fdiv(Z) is the category of tuples (Qn, σn)n>0 where Qn is a vector bundle over Z
and σn : F∗Z Qn+1 −→ Qn is an isomorphism. This is because the projections Z(n)

−→ Z
are equivalences

The main result of this section is the following Theorem:

Theorem 6.23. Let Z be a category fibered in groupoids over k. Then:

(1) if Z is connected then axiom A implies axioms B, C and D for Z −→ Z(∞) and

that 5Fdiv(Z) is a pro-smooth banded gerbe (see Definition B.11);

(2) axioms A and B holds for Z −→ Z(∞) if Z admits an fpqc covering U −→ Z from

a scheme U such that all its nonempty closed subsets contains an adically separated

point q (see Definition 6.3) with k(q)/k separable up to a finite extension (see

Definition 6.1); if moreover Z is connected and there exists a map Spec L −→ Z
where L/k is a field extension which is separably generated up to a finite extension

(see Definition 6.1) then H0(OZ(∞)) = H0(OZ )ét,k .

Lemma 6.24. Let f : Z −→ Z ′ be a nilpotent closed immersion. Then the induced functor

Z(∞)
−→ Z ′(∞) is an equivalence. In particular for any fiber category Y the restriction

Fdiv(Z,Y)→ Fdiv(Z ′,Y) is an equivalence.
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Proof. Let N ∈ N such that the Nth power of the ideals defining Z −→ Z ′ are all

0. For a given i ∈ N set X = Z(i) and X ′ = Z ′(i). In particular this N works also

for the nilpotent closed immersion X −→ X ′. Let i0 ∈ N with pi0 > N . Notice that

F i0
X ′ : X

′
−→ X ′ factors through X ⊆ X ′. This yield a k-map X ′ −→ X (i0) making the

following diagram commutative

X X (i0)

X ′ X ′(i0)

Thus we get k-maps Z ′(i) −→ Z(i+i0) with the above property. This yields a k-map

Z ′(∞) −→ Z(∞) which is easily seen to be a quasi-inverse of Z(∞)
−→ Z ′(∞).

Corollary 6.25. Let Z be a category fibered in groupoids. Then there exists a natural

k-functor ψ : Zinf −→ Z(∞) making the following diagram commutative

Z

Zinf Z(∞)
ψ

In particular if Y is a fibered category we obtain a restriction functor Fdiv(Z,Y) −→
Crys(Z,Y).

Proof. Given (ξ,U
j
−−→ T ) ∈ Zinf we obtain an arrow

T −→ T (∞)
( j (∞))−1

−−−−−→ U (∞) ξ (∞)

−−−→ Z(∞).

In a similar way an arrow in Zinf can be mapped to an arrow in Z(∞).

Lemma 6.26. If Z is a category fibered in groupoids then, for Z −→ Z(∞), axiom A

implies axiom B.

Proof. By Lemma 5.4 the category Fdiv(Z) is abelian, thus one has to show that if

F = (Fn, σn) ∈ Fdiv(Z) and F0 = 0 then F = 0. If C is an Fp-algebra and ξ : Spec (C)
−→ Z(n) a map, there exists η : Spec (C) −→ Z, namely the composition Spec (C) −→
Z(n)
−→ Z and a factorization of ξ as Spec (C) −→ V = Z(n)

×Z Spec C −→ Z(n). If

C has the k-structure induced by η : Spec C −→ Z, then V = (Spec C)(n), so that the

pullback of (Fn)|V along the relative Frobenius of C coincides with η∗F0 = 0 on Spec C .

Since the relative Frobenius for affine schemes is a homeomorphism, we can conclude

that (Fn)|V = 0, so that ξ∗Fn = 0.

Proof of Theorem 6.23(2), first sentence. Let (En, σn)n∈N ∈ Fdiv(Z,QCohfp) and

U −→ Z be the atlas of the statement. We have to show that all Ei are locally free. Since

all U (i)
→ Z(i) are fpqc coverings we can assume Z = U . Moreover, since the relative

Frobenius is a homeomorphism, we can moreover assume Z = Spec R, where (R,m) is
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a local ring which is m-adically separated and whose residue field L is separable up to

a finite extension over k. As for each i ∈ N, (En, σn)n>i is in Fdiv(Spec (R)(i),QCohfp)

and R(i) is again adically separated with respect to its maximal ideal and has a residue

field separable up to a finite extension over k by Lemma 6.5, we see that we can always

replace R by R(i) and, using Lemma 6.6, that we can assume m nilpotent. Since L/k is

separable up to a finite extension, we have a decomposition k ⊆ E ⊆ L, where E/k is

separable and L/E is finite. It follows that, for i � 0, R(i) has separable residue field.

On the other hand (R/m)(i) = L(i) is finite over the field E (i), so it is Artinian and

therefore the maximal ideal of R(i) is nilpotent. Thus we can assume L/k separable.

By Lemma 6.24 applied on the nilpotent closed immersion Spec L −→ Spec R we obtain

(Spec L)(∞) ' (Spec R)(∞). Thus we may assume R = L a field. Since L/k is separable

all L(i) are fields by Remark 6.2. Thus all En are vector spaces and thus locally free.

Example 6.27. Without the hypothesis on the residue fields in Theorem 6.23 the

conclusion is false. Indeed if k = Fp(z) and L = kperf then Fdivk(L) 6= Fdivk(L ,QCohfp).

Let φi : L(i+1)
−→ L(i) the relative Frobenius, that is φi (a⊗ λ) = a p

⊗ λ, and consider

xi = z1/pi
⊗ 1− 1⊗ z ∈ L(i). A direct computation shows that φi (xi+1) = xi and x0 = 0.

The collection x = (xi )i∈N defines a morphism O(Spec L)(∞) −→ O(Spec L)(∞) . Its cokernel is

not in Fdivk(L) because x0 = 0 but x1 6= 0.

Proof of Theorem 6.23(2), second sentence. Since axioms A and B holds and Z is

connected, by Proposition 5.7 we know that H0(OZ(∞)) = F ⊆ H0(OZ ) is a field.

The inclusion H0(OZ )ét,k ⊆ F follows pulling back along Z −→ Spec H0(OZ )ét,k : if

Q/k is a separable and finite extension of k then Spec Q = (Spec Q)(∞,k) so that

Fdivk(Q) = Vect(Q). For the other inclusion, pulling back via Spec L −→ Z we get a

map F −→ H0(O(Spec L)(∞)) = EndFdivk (L)(1) = L ′. Using the map Fdivk(L) −→ Strk(L)
and Theorem 6.8(2) we see that L ′ ⊆ L ét,k as desired.

Proof of Theorem 6.23(1), A H⇒ C. By Proposition 5.7 and Lemma 6.26 L =
H0(OZ(∞)) is a field. In what follows we will use the following notation. If W is a category

fibered in groupoids over L we will use W(i) for W(i,k) for i ∈ N∪ {∞} and denote by

W(i,L), for i ∈ N, the fibered category W with L-structure W
F i
W
−−→W π

−→ Spec L, where

FW is the absolute Frobenius, π is the structure map.

We need to show that the pullback functor HomL(Z(∞), 0)→ HomL(Z, 0) is an

equivalence for a finite and étale stack 0 over L. By Remark A.3 it is enough to

prove that φ∗
(i,Z) : HomL(Z(i), 0)→ HomL(Z, 0) is an equivalence for all i , where Z(i) is

equipped with the L-structure via Z(∞) and φ(i,Z) is the relative Frobenius. Denote by

ϕ : Z(i)
−→ Z the projection and consider the following 2-commutative diagram.

(Z)(i,L) (Z(i))(i,L) Z

(Z(i))(i,L) Z Z(i)

F i
Z

ϕ

φ(i,Z)

F i
Z(i)

φ(i,Z)

ϕ
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We have ϕ ◦φ(i,Z) = F i
Z , φ(i,Z) ◦ϕ = F i

Z(i) , and that the morphisms in the above

diagram are L-linear. The result then follows upon applying HomL(−, 0) to the

diagram, provided that the following is true: if W is a category fibered in groupoids

over L then HomL(W, 0)
F i
W◦−
−−−−→ HomL(W(i,L), 0) is an equivalence. By construction

HomL(W(i,L), 0) ' HomL(W, 0(i,L)) and a direct check shows that F i
W ◦− corresponds

to the composition along the relative Frobenius 0 −→ 0(i,L), which is an equivalence

because 0 is étale over L.

Proof of Theorem 6.23(1), A H⇒ D and last sentence. For quotient gerbes, please refer

to Definition B.1. By Proposition 5.7 and Lemma 6.26 we have that L = H0(OZ(∞,k))

is a field and 5Fdiv(Z) an L-gerbe. We must prove that, if 0 is a quotient L-gerbe of

5Fdiv(Z) of finite type, then 0 is smooth banded. We have an L-map φ : Z(∞,k)
−→ 0 such

that φ∗ : Rep0 −→ Fdiv(Z) is fully faithful. Set Z = Z ×k k and 0 = 0×k k
π
−−→ 0. Since

Z(i,k)
' Z(i,k)

×k k, using the definition of limit it is easy to see that Z(∞,k)
' Z(∞,k)

×k k.

Denote by φ : Z(∞,k)
−→ 0 the base change of φ. We claim that

φ
∗
: Vect(0) −→ Vect(Z(∞,k)

) = Fdivk(Z)

is fully faithful. Let V ,W ∈ Vect(0). Since φ∗ is faithful, it is enough to prove that

Hom0(π∗V , π∗W ) −→ HomZ(∞,k)(φ
∗π∗V , φ∗π∗W )

is bijective. The pushforward π∗V can be written as a direct sum of vector bundles on

0. Indeed let k′/k be a finite extension for which there exists V ′ ∈ Vect(0×k k′) inducing

V and consider 0
α
−−→ 0×k k′

β
−−→ 0. We have that π∗V = β∗(V ′⊗k′ k), which is a direct

sum of copies of β∗V ′, and β∗V ′ is a vector bundle because it is a coherent sheaf on 0,

which is an L-gerbe. Writing π∗V =
⊕

i Vi and π∗W =
⊕

j W j and using that φ∗ is fully

faithful on vector bundles, the proof of the bijectivity of the above map translates into the

following statement: given a collection of maps λi, j : Vi −→ W j for all i, j such that φ∗λi, j
induces a map µ :

⊕
i φ
∗Vi −→

⊕
j φ
∗W j , then it also induces a map

⊕
i Vi −→

⊕
j W j .

If ξ : Spec B −→ Z(∞,k) is any object, since ξ∗µ is defined and Spec B is quasi-compact,

we can conclude that for all i the set { j | ξ∗φ∗λi, j 6= 0} is finite. Since Spec B
φξ
−−→ 0 is

faithfully flat, the same holds over 0 and therefore the map
⊕

i Vi −→
⊕

j W j is well

defined.

As k is perfect, the absolute Frobenius of Z(∞,k)
is also an equivalence. By the discussion

above, we conclude that F∗ : Vect(0) −→ Vect(0) is fully faithful, where F is the absolute

Frobenius of 0. We show that u : O0 −→ F∗O0 is surjective. For all V ∈ Vect(0) we have

a bijection

Hom0(V,O0) −→ Hom0(F
∗V, F∗O0) ' Hom0(V, F∗O0)

which is induced by u. By [6, Corollary 3.9, p. 132] and Lemma 1.6 the sheaf F∗O0 is a

quotient of a direct sum of vector bundles. This easily implies that u is surjective.

Recall that if X is a category fibered in groupoids over a scheme S and we set X (1,S) for

the base change of X −→ S along the absolute Frobenius of S, then the absolute Frobenius

factors as X −→ X (1,S)
−→ X . Moreover if T −→ S is a map and we apply −×S T to
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the map X −→ X (1,S) we get X ×S T −→ (X ×S T )(1,T ). The stack 0 = 0×k k is a stack

over S = Spec (L ⊗k k). Thus the absolute Frobenius of 0 factors as 0
α
−−→ 0

(1,S) β
−−→ 0.

Since β is affine and O0 −→ β∗O0
(1,S) −→ β∗α∗O0 = F∗O0 is surjective, we can conclude

that O
0
(1,S) −→ α∗O0 is surjective. Since α is the base change of 0

δ
−−→ 0(1,L) along the

flat map S −→ Spec L, it also follow that O0(1,L) −→ δ∗O0 is surjective. In particular

δ∗O0 is of finite type and thus locally free, which implies that O0(1,L) −→ δ∗O0 is an

isomorphism. Using Proposition B.2(1) and Remark B.7 it follows that 0 −→ 0(1,L) is a

quotient. We claim that this implies that 0 is smooth banded. For this we can assume

L = k algebraically closed and 0 = B G, for an affine group scheme G of finite type over

k. The relative Frobenius is a quotient means that G −→ G(1) is faithfully flat, which

implies that G is reduced and thus smooth.

Remark 6.28. If k is perfect and Z is any category fibered in groupoids over k such

that Fdiv(Z) is a k-Tannakian category then the relative Frobenius of 5Fdiv(Z) is an

equivalence and this implies that 5Fdiv(Z) is pro-smooth banded.

Indeed we have commutative diagrams

Z(∞) 5Fdiv(Z) Vect(5Fdiv(Z)) Fdiv(Z)

Z(∞) 5Fdiv(Z) Vect(5Fdiv(Z)) Fdiv(Z)

'

F∗
Z(∞)

F∗5Fdiv(Z)FZ(∞) F5Fdiv(Z)
'

The absolute Frobenius of Z(∞) is the limit of the absolute Frobenius of the Z(i). Using

the description in Remark 6.22 we can interpret F∗Z(∞) : Fdiv(Z) −→ Fdiv(Z) as a shift

and thus conclude that it is an equivalence. Since 5Fdiv(Z) is a k-gerbe, it follows that its

absolute and relative Frobenius are equivalences. This implies that 5Fdiv(Z) is pro-smooth

banded. Indeed if 0 is a quotient of finite type of 5Fdiv(Z), its relative Frobenius 0 −→

0(1) is a quotient. It follows that 0 is smooth banded arguing as in the end of the above

proof.

If k is not perfect we do not have the description of Remark 6.22 and it is unclear

whether the relative Frobenius of5Fdiv(Z) is an equivalence or not. When k is algebraically

closed and Z is a connected, locally Noetherian and regular scheme the above argument

has already been used by dos Santos in [12, Theorem 11].

7. The local quotient of the Nori fundamental gerbe

Let k be a field of characteristic p > 0, X be a category fibered in groupoids over k
and denote by F : X −→ X the absolute Frobenius. For i ∈ N denote by Di the category

of triples (F , V, λ) where F ∈ Vect(X ), V ∈ Vect(k) and λ : V ⊗k OX −→ F i∗F is an

isomorphism. The category Di is monoidal, rigid and k-linear via k −→ EndDi (OX , k, id),
x 7−→ (x, x pi

). Moreover the association

Di −→ Di+1, (F , V, λ) 7−→ (F , F∗k V, F∗λ)
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where Fk is the absolute Frobenius of k, is k-linear and monoidal. We can therefore define

D∞ = lim
−→
i∈N

Di .

Theorem 7.1. Let X be a reduced category fibered in groupoids over k. Then X admits

a Nori local fundamental gerbe over k if and only if H0(OX ) does not contain nontrivial

purely inseparable field extensions of k. In this case D∞ is a k-Tannakian category and

the map X −→ 5D∞ , induced by the forgetful functor D∞ −→ Vect(X ), is the pro-local

Nori fundamental gerbe of X .

If H0(OX ) = k then Rep(5N,L
X /k) −→ Vect(X ) is an equivalence onto the full subcategory

of Vect(X ) of sheaves F such that F i∗
X F is free for some i ∈ N.

Proof. The only if part in the first claim is very similar to the proof in Proposition 4.3,

taking into account that a finite and purely inseparable field extension is a finite and

local stack. For the if part it is enough to show the remaining claims in the statement.

We apply Theorem 5.14 on the map X −→ XT = Spec k, which satisfies axiom A and

L = H0(OXT ) = k is a field. We have Ti (X ) = Di for all i ∈ N∪ {∞} and that X −→
(5D∞)L is the local Nori fundamental gerbe of X /L∞. Since L0 = k and L0 ⊆ L i are

purely inseparable inside H0(OX ) we also have L i = k for all i ∈ N∪ {∞}. Thus it remains

to show 5D∞ is pro-local. Thanks to Lemma 5.13, for any V ∈ D∞ = Vect(5D∞) there

exists an index i ∈ N such that F i∗
5D∞

V is free, where F5D∞ is the absolute Frobenius of

5D∞ , and by Theorem 5.14 plus the fact that T (X ) = Vect(k) is made of finite objects,

V is essentially finite. Let 0 be the monodromy gerbe of V ∈ D∞ (see Definition B.8).

Then the absolute Frobenius F i
0 factors as 0

π
−→ Spec (k)→ 0, where π is the structure

map of 0/k. This implies immediately that 0 is local.

In the last claim we have to show that D∞ −→ Vect(X ) is full. Actually one can easily

check that Di −→ Vect(X ) is fully faithful for all i ∈ N.

Remark 7.2. In [7] Esnault and Hogadi did not go into the study of the local quotient of

Nori’s fundamental group. However, using their main theorem it is easily seen (under their

assumptions) that the finite representations of the local quotient of Nori’s fundamental

group is the full Tannakian subcategory of D∞ consisting of the essentially finite objects.

Now our Theorem 7.1 grantees that any object in D∞ is essentially finite.
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Appendix A. Limit of categories and fibered categories

Definition A.1. Let I be a filtered category. A directed system of categories indexed by I is

a pseudo-functor D∗ : I −→ (Cat) [15, Definition 3.10]. Concretely this is the assignment

of data (Di ,Dα, λα,β , λi ): categories Di for all i ∈ I , functors Dα : Di −→ D j for all

i
α
−−→ j in I and natural isomorphisms λα,β : Dβ ◦Dα −→ Dβα for all composable arrows
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i
α
−−→ j

β
−−→ k and λi : Didi −→ idDi for all i ∈ I . This data is subject to compatibility

conditions (see [15, Definition 3.10]).

We define the limit of D∗, written limi∈I Di or D∞, in the following way. The category

D∞ has pairs (i, x), where i ∈ I and x ∈ Di , as objects. Given (i, x), ( j, y) ∈ D∞ the set

HomD∞((i, x), ( j, y)) is the limit on the category of pairs (i
α
−−→ k, j

β
−−→ k) (which is a

filtered category) of the sets HomDk (Dα(x),Dβ(y)). Composition is defined in the obvious

way. For all i ∈ I there are functors Fi : Di −→ D∞, Fi (x) = (i, x) and, for all i
α
−−→ j in

I , there are canonical isomorphisms µα : F j ◦Dα −→ Fi .

Given a category C we define the category CD in the following way. The objects are

collections (Hi , δα)i,i
α
−−→ j

where: Hi : Di −→ C are functors for all i ∈ I , δα : H j ◦Dα −→

Hi are natural isomorphisms for all arrows i
α
−−→ j in I . This data is subject to the

following compatibilities. For all i ∈ I we have δidi = Hi ◦ λi : Hi ◦Didi −→ Hi . For all

composable arrows i
α
−−→ j

β
−−→ k the following diagram commutes

Hk ◦Dβα Hi

Hk ◦Dβ ◦Dα H j ◦Dα

δβα

Hk◦λα,β
δβ◦Dα

δα

The arrows in CD are the obvious ones.

Given a functor G : C −→ C′ one can easily define a functor GD
: CD −→ C′D. Moreover

the data (Fi , µα) defined above is an object of DD
∞. In particular we obtain a functor

χC : Hom(D∞, C) −→ CD, (D∞
G
−−→ C) 7−→ GD(Fi , µα).

Proposition A.2. The functor χC in Definition A.1 is an isomorphism of categories.

Proof. Let us define a functor ι : CD −→ Hom(D∞, C). Given a = (Hi , δα) ∈ CD defines

ι(a) : D∞ −→ C as follows. For (i, x) ∈ D∞ set ι(a)(i, x) = Hi (x). For φ : (i, x) −→ ( j, y)

in D∞ choose i
f
−−→ k, j

g
−−→ k such that φ is induced by the arrow v : D f (x) −→ Dg(y)

in Dk . Set ι(a)(φ) as the only dashed arrow making the following diagram commutative

Hk ◦ D f (x) Hk ◦ Dg(y)

Hi (x) H j (y)

Hk (v)

δ f δg

A direct check shows that this arrows does not depend on the choices of f, g, v. In

particular ι(a) is easily seen to be a functor D∞ −→ C. The action of ι on arrows is the

obvious one: the required compatibilities follows from the compatibilities of arrows in

CD. In conclusion one get a functor ι : CD −→ Hom(D∞, C). The equality χC ◦ ι = id can

be checked directly.

For the converse let G : D∞ −→ C be a functor. We have χC (G) = (G ◦ Fi ,G ◦µα)
and set G̃ = ι(χC (G)). We must show that G = G̃. For i ∈ I and x ∈ Di we have
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G(i, x) = G(Fi (x)) = G̃(x). Let now φ : (i, x) −→ ( j, y) be an arrow in D∞ and i
α
−−→

k, j
β
−−→ k arrows, v : Dα(x) −→ Dβ(y) inducing φ. This can be expressed in the following

commutative diagram

(k,Dα(x)) (i, x)

(k,Dβ(y)) ( j, y)

µα(x)

µβ (y)
φFk (v)

We have G(Fk(v)) = G̃(Fk(v)), G ◦µα = G̃ ◦µα and G ◦µβ = G̃ ◦µβ by construction. It

follows that G(φ) = G̃(φ).

Remark A.3. When I = N with the usual order a directed system D∗ of categories indexed

by N is just an infinite sequence of categories and functors:

D0
G0
−−→ D1

G1
−−→ D2

G2
−−→ · · · .

Moreover if C is a category then CD is equivalent to the category whose objects are tuples

(Hn, σn) where: Hn : Dn −→ C is a functor, σn : Hn+1 ◦Gn −→ Hn a natural isomorphism.

Let D∗ be a direct system of categories indexed by I . We have the following fact which

are easy to check:

• If for all arrows α in I the functor Dα is faithful (respectively fully faithful, equivalence)

then for all i ∈ I the functor Fi is faithful (respectively fully faithful, equivalence);

• If for all i ∈ I the category Di is a groupoid then D∞ is a groupoid;

• If R is a ring, for all i ∈ I the category Di is R-linear and for all arrows α in I the

functor Dα is R-linear then D∞ is naturally an R-linear category and for all i ∈ I the

functor Fi is R-linear;

• If for all i ∈ I the category Di is abelian and for all arrows α the functor Dα is additive

and exact, then D∞ is an abelian category and for all j ∈ I the functor F j is also

additive and exact.

• If for all i ∈ I the category Di is monoidal and for all arrows α, β in I the functor

Dα has a monoidal structure and the λα,β are monoidal then we can endow D∞ and,

for all i ∈ I , Fi with a monoidal structure in the following way. Given i, j ∈ I choose

ki, j ∈ I , maps i
αi, j
−−→ ki, j , j

βi, j
−−→ ki, j and define

(i, x)⊗ ( j, y) = (ki, j ,Dαi, j (x)⊗Dki, j
Dβi, j (y))

and (i0, 1Di0
) as unit for a chosen i0 ∈ I . All the maps required in order to have a

monoidal structure are easy to define.

Proposition A.4. Let C be a category with fiber products, I be a filtered category and X∗
be a directed system of fibered categories over C, that is a direct system of categories

X∗ given by data (Xi ,Xα, λα,β , λi ) such all πi : Xi −→ C are fibered categories, all

Xα : Xi −→ X j are maps of fibered categories and all λα,β , λi are base preserving natural
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transformations. Then the induced functor X∞ −→ C makes X∞ into a fibered category,

the functor Fi : Xi −→ X∞ are maps of fibered categories and µα are base preserving

natural transformations. Moreover if all Xi are fibered in groupoids (respectively sets)

then so is X∞.

If c ∈ C then the direct system X∗ induces a direct system of categories X (c)∗ : I −→
(cat) and the Fi : Xi −→ X∞ and the natural transformations µα induces an equivalence

X (c)∞ ' X∞(c).

If Y is another fiber category over C then χX restricts to an isomorphism between

HomC(X∞,Y) and the full subcategory of YX of objects (Hi , δα) such that Hi are maps

of fibered categories and the δα are base preserving natural transformations.

Proof. We have that (πi , ωα) ∈ CX , where we set ωα = id for all α, because the πi strictly

commutes with the Xα. We therefore get a functor π∞ : X∞ −→ C such that πi = π∞ ◦ Fi
and π∞(µα) = id. The first equation assures that the Fi strictly commutes over C, the

second assures that the µα are base preserving natural transformations. Moreover it is

easy to see that the Fi map Cartesian arrows to Cartesian arrows, which in particular

implies that X∞ is a fibered category.

The system X∗ together with the structure morphisms πi can be seen as a

pseudo-functor from I to the 2-category Fib(C) of fibered categories over C. Given c ∈ C
the evaluation in c yields a functor Fib(C) −→ (cat) and, composing, we obtain the

direct system X (c)∗. It is easy to see that X∞(c) and X (c)∞ are the same categories. In

particular if all Xi are fibered in groupoids (respectively sets) then so is X∞.

Let G : X∞ −→ Y any functor and χX (G) = (G ◦ Fi ,G ◦µα) ∈ YX . It is easy to see

that G is base preserving if and only if the G ◦ Fi and G(µα) are base preserving. In

this case, assuming that the G ◦ Fi preserve Cartesian arrows, we have to show that G
does the same. This follows from the fact that a Cartesian arrow γ in X∞ is, up to

isomorphism, determined by the target of γ and π∞(γ ), which implies that γ is image

of a Cartesian arrow in some Xi .

Appendix B. Affine gerbes and Tannakian categories

Let k be a field. In this appendix we collect useful results about affine gerbes and

Tannakian categories. Recall that an affine gerbe 0 over k is a gerbe for the fpqc topology
0 −→ Aff/k with affine diagonal. If L/k is a field extension and ξ ∈ 0(L) then 0 is affine

if and only if Aut0(ξ) is an affine scheme. Moreover any map from a scheme X −→ 0 is

an fpqc covering which is affine if X is affine. (See [4, Proposition 3.1] for details.)

A k-Tannakian category is a k-linear, monoidal, rigid and abelian category C such that

EndC(1C) = k (where 1C is the unit) and there exists a field extension L/k and a k-linear,

exact and monoidal functor C −→ VectL.

Classical Tannaka’s duality states that the functors Vect(−) and 5∗ between the

2-categories of affine gerbes over k and k-Tannakian categories are “quasi-inverses” of

each other. See § 1 for the definition of 5∗ and of the natural functors C −→ Vect(5C)
and 0 −→ 5Vect(0).

Given an affine gerbe 0 we will often use the notation Rep0 instead of Vect(0).
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Definition B.1. A map of affine group schemes G −→ G ′ over k is a quotient if it is

faithfully flat or equivalently if H0(OG ′) −→ H0(OG) is injective (see [16, Chapter 14]).

A map of affine gerbes 0
φ
−−→ 0′ over k is a quotient (respectively faithful) if there

exists a field L and ξ ∈ 0(L) such that the map of affine group schemes Aut0(ξ) −→

Aut0′(φ(ξ)) is a quotient (a monomorphism or equivalently a closed immersion by [16,

§ 15.3]). This notion does not depend on the choice of ξ and L. Moreover φ is faithful if

and only if it is faithful as a functor.

Proposition B.2. Let φ : 0 −→ 0′ be a map of affine gerbes. Then

(1) the map O0′ −→ φ∗O0 is an isomorphism if and only if φ∗ : Rep0′ −→ Rep0 is

fully faithful;

(2) the following are equivalent: (a) φ is a quotient; (b) φ is a relative gerbe; (c)

the functor φ∗ : Rep0′ −→ Rep0 is fully faithful and its image is stable under

quotients;

(3) the functor φ is faithful if and only if all V ∈ Rep0 is a subquotient of φ∗W for

some W ∈ Rep0′.

Proof. For (1), the map ρ : O0′ −→ φ∗O0 induces maps

Hom0′(V,W ) −→ Hom0′(V,W ⊗φ∗O0) ' Hom0(φ
∗V, φ∗W ) for V,W ∈ Rep0′.

So if ρ is an isomorphism then φ∗ is fully faithful. Conversely assume the above map

bijective for all V,W and choose W = O0′ . The map ρ is injective since φ is faithfully

flat. The surjectivity follows using that Rep0 generates QCoh(0) by [6, Corollary 3.9,

p. 132].

For (2), (a)⇐⇒ (c) and (3) see [11, 3.3.3(c), p. 205]. For (2), (a)⇐⇒ (b) we can assume

0 = B G, 0′ = B G ′ and φ induced by G −→ G ′. If φ is a quotient then B G×B G ′ Spec k '
B K , where K is the kernel of G −→ G ′, and thus φ is a relative gerbe. For the converse,

one can replace 0 by the image of G −→ G ′ and assume G ⊆ G ′ a closed subgroup. In

this case B G×B G ′ Spec k ' G ′/G and G ′/G −→ Spec k is a gerbe if and only if it is an

isomorphism, that is G ′ = G.

Definition B.3. Given a Tannakian category C a full Tannakian subcategory of C is

a sub-abelian, submonoidal and rigid full subcategory D ⊆ C which is stable under

quotients (in other words is the image of a functor Rep0′ −→ C induced by a quotient

map 5C −→ 0′.

Given a subset T of objects of C we denote by 〈T 〉 the full subcategory of C whose

objects are subquotients of objects of the form P(X) or P(X∨) for X ∈ T and P ∈ N[t].
It is easy to see that 〈T 〉 is the smallest full Tannakian subcategory of C containing T .

For this reason we call 〈T 〉 the sub-Tannakian-category spanned by T .

Definition B.4. If φ : 0 −→ 0′ is a map of affine gerbe there exists a unique (up to a

unique isomorphism) factorization of φ as 0
α
−−→ 1

β
−−→ 0′, where α is a quotient and β

is faithful. We call 1 the image of φ.
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Definition B.5. A finite gerbe over k is an affine gerbe over k which is a finite stack.

An affine gerbe 0 over k is finite and étale (respectively local) if it is finite and étale

(respectively local) in the sense of Definition 3.1 (respectively Definition 3.9).

Proposition B.6. Let 0 be an affine gerbe over k, L/k be a field extension and ξ ∈ 0(L).

(1) The following conditions are equivalent: (a) 0 is an algebraic stack; (b) Aut0(ξ)/L
is of finite type; (c) there exists V ∈ Rep0 such that 〈V 〉 = Rep0.

(2) The gerbe 0 is finite if and only if there exists V ∈ Rep0 generating QCoh(0) (see

Definition 1.3);

(3) The gerbe 0 is finite (respectively finite and étale, finite and local) if and only if

Aut0(ξ)/L is finite (respectively finite and étale, finite and local).

Proof. Implications (1), (b)⇐⇒ (c) H⇒ (a) follows from [11, Chapter III, 3.3.1.1] and

fpqc descent. For (a) H⇒ (b), we choose an fppf atlas X → 0 with X a k-scheme. Since

X ×0 X is an fppf X -algebraic space, the map X ×0 X → X ×k X is also fppf. This implies

that the diagonal of 0 is fppf, whence the result.

Item (2) is proved in [11, Chapter III, 3.3.3(a)], while (3) follows from (1) and

Remark 3.7.

Remark B.7. Let φ be a map of gerbes factorizing as 0
α
−−→ 1

β
−−→ 0′, where α is a

quotient and β is faithful. If β is affine then φ is a quotient if and only if φ∗ : Rep0′ −→
Rep0 is fully faithful. Indeed in this last case also β∗ : Rep0′ −→ Rep1 would be

fully faithful, that is O0′ ' β∗O1 thanks to Proposition B.2: if β is affine than it is

an isomorphism.

The map β is affine in the following cases: 1 is finite, for instance if 0 or 0′ is finite;

0 is of finite type and φ is a relative Frobenius. Moreover, if L/k is a field extension,

ξ ∈ 0(L), v : G = Aut0(ξ) −→ Aut0′(φ(ξ)) = G ′ and H its image, then β is affine if and

only if G ′/H is affine, which is true in the following cases: H is normal in G ′, for instance

if 0′ is abelian; G ′ is of finite type and the closed immersion H −→ G ′ is nilpotent.

This can be proved when L = k is algebraically closed, so that 0 = B G, 0′ = B G ′ and

φ is induced by v : G −→ G ′. The map β is B H −→ B G ′ and we have a 2-Cartesian

diagram

G ′/H Spec k

B H B G ′
β

So β is affine if and only if G ′/H is affine. This is the case if H is finite (see [2, 03BM])

or if H is normal (see [16, § 16.3]). If H(k) = G ′(k), as for the relative Frobenius, we

have that G ′/H is an algebraic space of finite type and with only one rational section

p ∈ G ′/H . The complement of p is an algebraic space of finite type without rational

points and thus empty. Since quasi-separated algebraic spaces are generically schemes,

we can conclude that G ′/H is a scheme of finite type over k with just one point, thus a

finite k-scheme.
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Definition B.8. Given an affine gerbe 0 over k and E ∈ Vect(0), the monodromy gerbe

of E , denoted by 0E , is the gerbe corresponding to 〈E〉, or, equivalently, the image of

the map 0 −→ B GLn induced by E (where n = rk E). By Proposition B.6 0E is of finite

type over k.

Let C be a Tannakian category, we denote EFin(C) (respectively Ét(C), Loc(C)) the full

subcategory of C consisting of objects with finite (respectively finite and étale, finite and

local) monodromy gerbe.

Remark B.9. If C is a Tannakian category then D = EFin(C) (respectively D = Ét(C),
D = Loc(C)) is a full Tannakian subcategory of C. Indeed D is additive because, given

E, F ∈ C, the monodromy gerbe of E ⊕ F is the image of 5C −→ (5C)E ×k (5C)F .

Moreover notice that if E, F ∈ C and F ∈ 〈E〉 then (5C)F is a quotient of (5C)E .

We conclude that D is a full Tannakian subcategory of C observing that: D is

monoidal because E ⊗ F ∈ 〈E ⊕ F〉; D is abelian and stable under quotients because

if F is a quotient or a subobject of E then F ∈ 〈E〉; D is stable under duals because

E∨ ∈ 〈E〉.

Definition B.10 [4, Definition 7.7, p. 21]. Let C be an additive and monoidal category.

An object E ∈ C is called finite if there exist f 6= g ∈ N[X ] polynomials with natural

coefficients and an isomorphism f (E) ' g(E), it is called essentially finite if it is a kernel

of a map of finite objects of C. We denote by EFin(C) the full subcategory of C consisting of

essentially finite objects. When C is k-Tannakian the two definitions of EFin(C) introduced

agree thanks to [4, Theorem 7.9], that is an object of C is essentially finite if and only if

it has finite monodromy gerbe.

Definition B.11. Let 0 be an affine gerbe. We say that 0 is profinite (respectively

pro-étale, pro-local) if it is a filtered projective limit (in the sense of [4, § 3]) of finite

(respectively finite and étale, finite and local) gerbes. We denote by 0̂ (respectively

0ét, 0L) the quotient gerbe 5EFin(Rep0) (respectively 5Ét(Rep0), 5Loc(Rep0)) and call it

the profinite (respectively pro-étale, pro-local) quotient of 0. Notice that 0 is profinite

(respectively pro-étale, pro-local) if and only if 0 = 0̂ (respectively 0 = 0ét, 0 = 0L)

and, if 0 is an affine gerbe over k, then 0̂ = 5N
0/k , 0ét = 5

N,ét
0/k and 0L = 5

N,L
0/k .

We say that 0 is smooth (pro-smooth) banded if there exists L/k field extension and

ξ ∈ 0(L) such that Aut0(ξ) is a smooth group scheme over L (a projective limit of smooth

group schemes over L).

Remark B.12. An affine gerbe 0 is pro-smooth banded if and only if any finite type

quotient of 0 is smooth banded. The implication “⇐” follows from the fact that affine

gerbes are projective limit of gerbes of finite type. For the other, we can reduce to the

neutral case, so that one has to prove that if v : G∞ = lim
←− j

G j −→ G is a quotient, G is

of finite type and the G j are smooth then G is smooth. But v factors through a quotient

map G j −→ G. Since G j −→ G is faithfully flat and G j is smooth it follows that G is

smooth.
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